Классификация сталей

Способы улучшения прочностных характеристик

Повышение прочности углеродистой стали любой группы происходит при помощи термической обработки. Одним из наиболее распространенных методов является закалка плазмой. В ходе процедуры на поверхности образуется структура из мартенсита, твердость которого превышает 9,5 ГПа. Данная структура увеличивает устойчивость стали к износу.

Еще один метод улучшения прочностных характеристик стали — химико-термическая обработка. В ходе процедуры сплав нагревается до конкретного показателя, а затем подвергается воздействию химикатов, что позволяет улучшить его параметры. Такая обработка повышает твердость и стойкость металла к износу, а также улучшает устойчивость к образованию ржавчины в кислых и влажных средах. Метод подходит для углеродистой стали любой группы.

Прокаливаемость

Каждая сталь имеет «предельный» размер сечения, выше которого невозможно достичь полной закалки (повышения твёрдости). Для обеспечения оптимальных свойств сечения требуется либо материал более высокого качества, либо повышение скорости охлаждения, возможно, даже с использованием охлаждающих сред с пониженной температурой (охлаждение в сплошном потоке).

Однако более высокая скорость закалки всегда увеличивает риск деформации или растрескивания, а быстрое охлаждение снижает ударную вязкость.

На прокаливаемость влияют следующие факторы:

  • Процентное содержание алюминия и азота. Некоторые углеродистые и низколегированные стали содержат более 0,3… 0,5 % алюминия (добавляется для раскисления), что снижает твёрдость после закалки. Таким же является и влияние азота;
  • Наличие неконтролируемой атмосферы внутри закалочной печи. В печах с защитной атмосферой прокаливаемость всегда повышается;
  • Наличие в химическом составе никеля и хрома, при высоких температурах закалки уменьшает глубину закалённого слоя, а при повышении скорости охлаждения способствует отпускной хрупкости. Чтобы сохранить требуемую сорбитную структуру, отпуск ведут при максимально возможных температурах. Если показатели твёрдости неудовлетворительны, прибегают к нагартовке в холодном состоянии.

Маркировка сталей по американской и европейской системам

Собираетесь купить металлопрокат? В нашем магазине разумные цены и качество производителя.

В США существует несколько систем маркировки сталей, разработанных различными организациями по стандартизации. Для нержавеющих сталей, чаще всего, применяют систему AISI, которая действует и в Европе. Согласно AISI, сталь обозначается тремя цифрами, в отдельных случаях после них идут одна или несколько букв. Первая цифра говорит о классе стали, если она – 2 или 3, то это аустенитный класс, если 4 – ферритный или мартенситный. Следующие две цифры обозначают порядковый номер материала в группе. Буквы обозначают:

  • L – низкую массовую доля углерода, менее 0,03%;
  • S – нормальную концентрацию С, менее 0,08%;
  • N – означает, что добавлен азот;
  • LN – низкое содержание углерода сочетается с добавкой азота;
  • F – повышенную концентрацию фосфора и серы;
  • Se – сталь содержит селен, В – кремний, Cu – медь.

В Европе применяется система EN, которая отличается от российской тем, что в ней сначала перечисляются все легирующие элементы, а затем в том же порядке цифрами указывается их массовая доля. Первая цифра – концентрация углерода в сотых долях процента.

Если легированные стали, конструкционные и инструментальные, кроме быстрорежущих, включают более 5% хотя бы одной легирующей добавки, перед содержанием углерода ставят букву «Х».

Страны ЕС применяют маркировку EN, в некоторых случаях параллельно указывая национальную марку, но с пометкой «устаревшая».

Технология производства

Получение сплава предусматривает переработку чугуна. При этом ненужные составляющие отжигают, заменяя их элементами-лигатурами.

Процесс проводится на металлургическом комбинате по следующим технологиям:

  • Мартеновский способ. Смесью чугуна с рудой загружают мартеновскую печь. Для отжига излишков углерода плавят при 2050°С, вводят лигатуры. Продукт (сталь) разливают по емкостям, отправляют на прокатку. Способ считается устаревшим.
  • Кислородно-конвертерный. Сквозь массив чугуна пропускают поток воздуха либо воздушно-кислородной смеси. Цель – быстрее и полнее отжечь содержимое.
  • Электроплавка. Сырье плавится при 2210°С. Печь закрыта, поэтому «загрязнение» сплава газами исключено. Метод затратен, применяется для получения элитного продукта.
  • Прямой. Для продувки окатышей из железной руды печь нагревают до 1060°С. Используется аммиачно-кислородная смесь плюс угарный газ, образованные при сгорании природного газа.

Диаграмма состояния сплавов железо-углерод, область стали помечена синим Для получения материала с повышенными характеристиками термообработку продолжают. Способ получения предусматривает закалку, цементацию, азотирование (аккумулирование углерода либо азота на поверхности для увеличения износостойкости), цианирование («накачка» внешнего слоя азотом для ускорения процесса), другие операции.

6.6. Углеродистые и легированные стали. Маркировка сталей

Углеродистая сталь – это нелегированная сталь, содержащая 0,04 – 2% углерода. Также в состав стали входят постоянные примеси – кремний и марганец и вредные примеси – фосфор и сера (в количестве 0,05 – 0,06%).

Легированные стали – стали, в которые вводят специальные легирующие элементы для повышения качества стали и придания ей специальных свойств.

К таким элементам относятся:

  • Хром Сr повышает твердость, прочность, вязкость, износостойкость, коррозионную стойкость, а также пластичность, но понижает теплопроводность.
  • Никель Ni повышает прочность, твердость, вязкость при низких температурах, прокаливаемость и коррозионную стойкость стали и при этом незначительно снижает пластичность. От содержания никеля в стали зависят ее электросопротивление
    и коэффициент теплового расширения. Никель – дорогой металл, поэтому в конструкционные стали его вводят вместе с хромом и другими элементами, притом в предельно минимальном количестве.
  • Вольфрам W уменьшает отпускную хрупкость, повышает твёрдость, износостойкость, жаропрочность, понижает вязкость и способствует образованию мелкого зерна.
  • Молибден Мо повышает твердость, прочность, прокаливаемость, обрабатываемость резанием, жаропрочность, способствует образованию мелкозернистой структуры, улучшает свариваемость и механические свойства стали после цементации,
    уменьшает вязкость и отпускную хрупкость стали.
  • Кремний Si при содержании 0,8 % и больше значительно повышает твердость, прочность, упругость и одновременно снижает вязкость стали.
  • Марганец Мn при содержании в стали 1 % и больше повышает ее прочность и твердость, но снижает вязкость, увеличивает прокаливаемость, износостойкость и улучшает свариваемость стали.
  • Ванадий V повышает твердость, прочность, вязкость, устойчивость против динамических напряжений и износа, уменьшает отпускную хрупкость, измельчает структуру и повышает устойчивость против перегрева при закалке.
  • Титан Тi повышает твердость, прочность, износостойкость, но снижает прокаливаемость стали. Улучшает свариваемость нержавеющих сталей, снижает ликвацию.

Разновидности некоторых сталей

Марки сталиТермообработкаТвёрдость (сердцевина-поверхность)
35нормализация163—192 HB
40улучшение192—228 HB
45нормализация179—207 HB
45улучшение235—262 HB
55закалка и высокий отпуск212—248 HB
60закалка и высокий отпуск217—255 HB
70закалка и высокий отпуск229—269 HB
80закалка и высокий отпуск269—302 HB
У9отжиг192 HB
У9закалка50—58 HRC
У10отжиг197 HB
У10закалка62—63 HRC
40Хулучшение235—262 HB
40Хулучшение+закалка токами выс. частоты45-50 HRC; 269—302 HB
40ХНулучшение235—262 HB
40ХНулучшение+закалка токами выс. частоты48-53 HRC; 269—302 HB
35ХМулучшение235—262 HB
35ХМулучшение+закалка токами выс. частоты48-53 HRC; 269—302 HB
35Лнормализация163—207 HB
40Лнормализация147 HB
40ГЛулучшение235—262 HB
45Лулучшение207—235 HB
65Г

HB — твёрдость по Бринеллю, HRC — твёрдость по Роквеллу.

Машиностроительные цементируемые и азотируемые стали.

Цементацию (азотирование) широко применяют для упрочнения средне размерных зубчатых колес, валов коробки передач автомобилей, валов быстроходных станков, шпинделей и др. Для деталей обычно используют низкоуглеродистые (0,15—,25 % С) стали. Содержание легирующих элементов в этих сталях не должно быть слишком высоким, но должно обеспечивать требуемую прокаливаемость поверхностного слоя и сердцевины.

После цементации, закалки и низкого отпуска цементованный слой должен иметь твердость 58-62 НRС, а сердцевина 30-42 НRС. Сердцевина должна обладать высокими механическими свойствами, особенно повышенным пределом текучести, должна быть наследственно мелкозернистой. Для измельчения размера зерна цементируемые стали микролегируют ванадием,титаном, ниобием, цирконием, алюминием и азотом, образующими мелкодисперсные нитриды и карбонитриды, или карбиды, задерживающие рост зерна аустенита.

Цементируемые стали — 20Х, 18ХГТ, 20ХГР, 25ХГМ, 12ХН3А и др.

Машиностроительные улучшаемые стали называются улучшаемыми потому, что подвергаются термической обработке, заключающейся в закалке и отпуске при высоких температурах – улучшению. Это среднеуглеродистые стали (0,3-0,5 % С). Они должны иметь высокую прочность, пластичность, высокий предел выносливости, малую чувствительность к отпускной хрупкости, должны хорошо прокаливаться. Применяются для изготовления коленчатых валов, валы, оси, штоки, шатуны, ответственные детали турбин и компрессорных машин.

Марки – 35, 45, 40Х, 45Х, 40ХР, 40ХН, 40ХН2МА и др.

Рессорно-пружинные стали – марки 70, 65Г, 60С2, 50ХГ, 50ХФА, 65С2Н2А, 70С2ХА и др. Эти стали относятся к классу конструкционных.

Эти стали должны иметь особые свойства в связи с условиями работы пружин и рессор, которые служат для смягчения толчков и ударов. Основное требование – высокий предел упругости и выносливости. Этим условиям удовлетворяют углеродистые стали и стали, легированные элементами, повышающими предел упругости (кремний, марганец, хром, ванадий и вольфрам). Особенностью термической обработки рессорных листов и пружин является проведение после закалки отпуска при температуре 400-5000С. Такая обработка позволяет получать наиболее высокий предел упругости.

Шарикоподшипниковые стали – ШХ15 (0,95 –1,05 % С и 1,3-1,65 % хрома). Заэвтектоидное содержание углерода и хром обеспечивают получение после закалки высокой равномерной твердости, устойчивой после истирания, необходимой прокаливаемости и достаточной вязкости. Термическая обработка включает отжиг, закалку и отпуск. Отжиг снижает твердость и позволяет получать мелкозернистый перлит. Закалка проводится при 830-8600С, охлаждение в масле, отпуск 150-160 0С. Твердость НRС 62-65, структура – бесструктурный мартенсит с равномерно распределенными мелкими карбидами.

Для изготовления деталей крупногабаритных подшипников (диаметром более 400 мм), работающих в тяжелых условиях при больших ударных нагрузках, применяют цементуемую сталь 20Х2Н4А (температура цементации 930-9500С в течение 50-170 ч, толщина слоя 5-10 мм).

Износоустойчивые стали – 110Г13Л (0,9-1,3 % С, 11,5-14,5 % марганца). Литая аустенитная сталь, после литья состоит из аустенита и избыточных карбидов (Fe,Mn)3С, выделяющихся по границам зерен, что снижает прочность и вязкость стали. Поэтому литые изделия закаливают от 11000С в воде. При этом карбиды растворяются и структура становится стабильной аустенитной.

Сталь имеет высокую прочность и сравнительно малую твердость. В процессе работы при ударных нагрузках происходит упрочнение (наклеп) поверхности стали при пластической деформации, в результате в поверхностном слое образуется мартенсит. Именно он обеспечивает высокую износостойкость. По мере износа внешнего слоя, мартенсит образуется в следующих слоях. Применяют для трамвайных стрелок, щек камнедробилок, козырьков ковшей, черпаков и т.д.

При циклическом контактно-ударном нагружении и ударно-абразивном изнашивании применяют сталь 60Х5Г10Л, претерпевающую при эксплуатации мартенситное превращение.

Лопасти гидротурбин и гидронасосов, судовых гребневых винтов, работающих в условиях изнашивания при кавитационной эрозии, изготавливают из сталей с нестабильным аустенитом 30Х10Г10 и 0Х14АГ12, испытывающих при эксплуатации частичное мартенситное превращение.

Машиностроительные цементируемые и азотируемые стали.

Цементацию (азотирование) широко применяют для упрочнения средне размерных зубчатых колес, валов коробки передач автомобилей, валов быстроходных станков, шпинделей и др. Для деталей обычно используют низкоуглеродистые (0,15—,25 % С) стали. Содержание легирующих элементов в этих сталях не должно быть слишком высоким, но должно обеспечивать требуемую прокаливаемость поверхностного слоя и сердцевины.

После цементации, закалки и низкого отпуска цементованный слой должен иметь твердость 58-62 НRС, а сердцевина 30-42 НRС. Сердцевина должна обладать высокими механическими свойствами, особенно повышенным пределом текучести, должна быть наследственно мелкозернистой. Для измельчения размера зерна цементируемые стали микролегируют ванадием,титаном, ниобием, цирконием, алюминием и азотом, образующими мелкодисперсные нитриды и карбонитриды, или карбиды, задерживающие рост зерна аустенита.

Цементируемые стали — 20Х, 18ХГТ, 20ХГР, 25ХГМ, 12ХН3А и др.

Машиностроительные улучшаемые стали называются улучшаемыми потому, что подвергаются термической обработке, заключающейся в закалке и отпуске при высоких температурах – улучшению. Это среднеуглеродистые стали (0,3-0,5 % С). Они должны иметь высокую прочность, пластичность, высокий предел выносливости, малую чувствительность к отпускной хрупкости, должны хорошо прокаливаться. Применяются для изготовления коленчатых валов, валы, оси, штоки, шатуны, ответственные детали турбин и компрессорных машин.

Марки – 35, 45, 40Х, 45Х, 40ХР, 40ХН, 40ХН2МА и др.

Рессорно-пружинные стали – марки 70, 65Г, 60С2, 50ХГ, 50ХФА, 65С2Н2А, 70С2ХА и др. Эти стали относятся к классу конструкционных.

Эти стали должны иметь особые свойства в связи с условиями работы пружин и рессор, которые служат для смягчения толчков и ударов. Основное требование – высокий предел упругости и выносливости. Этим условиям удовлетворяют углеродистые стали и стали, легированные элементами, повышающими предел упругости (кремний, марганец, хром, ванадий и вольфрам). Особенностью термической обработки рессорных листов и пружин является проведение после закалки отпуска при температуре 400-5000С. Такая обработка позволяет получать наиболее высокий предел упругости.

Шарикоподшипниковые стали – ШХ15 (0,95 –1,05 % С и 1,3-1,65 % хрома). Заэвтектоидное содержание углерода и хром обеспечивают получение после закалки высокой равномерной твердости, устойчивой после истирания, необходимой прокаливаемости и достаточной вязкости. Термическая обработка включает отжиг, закалку и отпуск. Отжиг снижает твердость и позволяет получать мелкозернистый перлит. Закалка проводится при 830-8600С, охлаждение в масле, отпуск 150-160 0С. Твердость НRС 62-65, структура – бесструктурный мартенсит с равномерно распределенными мелкими карбидами.

Для изготовления деталей крупногабаритных подшипников (диаметром более 400 мм), работающих в тяжелых условиях при больших ударных нагрузках, применяют цементуемую сталь 20Х2Н4А (температура цементации 930-9500С в течение 50-170 ч, толщина слоя 5-10 мм).

Износоустойчивые стали – 110Г13Л (0,9-1,3 % С, 11,5-14,5 % марганца). Литая аустенитная сталь, после литья состоит из аустенита и избыточных карбидов (Fe,Mn)3С, выделяющихся по границам зерен, что снижает прочность и вязкость стали. Поэтому литые изделия закаливают от 11000С в воде. При этом карбиды растворяются и структура становится стабильной аустенитной.

Сталь имеет высокую прочность и сравнительно малую твердость. В процессе работы при ударных нагрузках происходит упрочнение (наклеп) поверхности стали при пластической деформации, в результате в поверхностном слое образуется мартенсит. Именно он обеспечивает высокую износостойкость. По мере износа внешнего слоя, мартенсит образуется в следующих слоях. Применяют для трамвайных стрелок, щек камнедробилок, козырьков ковшей, черпаков и т.д.

При циклическом контактно-ударном нагружении и ударно-абразивном изнашивании применяют сталь 60Х5Г10Л, претерпевающую при эксплуатации мартенситное превращение.

Лопасти гидротурбин и гидронасосов, судовых гребневых винтов, работающих в условиях изнашивания при кавитационной эрозии, изготавливают из сталей с нестабильным аустенитом 30Х10Г10 и 0Х14АГ12, испытывающих при эксплуатации частичное мартенситное превращение.

Классификация стали по содержанию примесей

Кроме классификации по содержанию углерода и по степени раскисления, применяется классификация по качеству, определяемому методом производства и содержанием вредных примесей, прежде всего, серы и фосфора. Классификация сталей по качеству:

ГруппаСера, %Фосфор, %
Обыкновенные (рядовые)< 0,06< 0,07
Качественные< 0,04< 0,035
Высококачественные< 0,025< 0,025
Особовысококачественные< 0,015< 0,025

В некоторых классификациях особовысококачественные включают в состав высококачественных.

Обыкновенного качества

Большую часть рядовых сталей составляют углеродистые сплавы (С < 0,6%) Их производят мартеновским способом или конвертерным с использованием кислорода. Эти виды стали предназначены для самых массовых применений, недороги в производстве, хорошо поддаются обработке, но и не обладают особой прочностью или износостойкостью.

Качественные

К качественным относятся как углеродистые, так и легированные. Также производятся мартеновским или конвертерным способом с кислородным дутьем, но к составу сырья предъявляются намного более строгие требования, чем в случае рядовых. Также строже требования к соблюдению параметров плавки и розлива. Такие группы сталей стоят дороже и применяются для более ответственных деталей, работающих в условиях серьезных нагрузок.

Высококачественные

Эта группа производится более совершенными с точки зрения технологии способами, такими, как выплавка в электропечах. Особенности технологии производства позволяют добиться особо низкого содержания вредных примесей неметаллов и газовых включений, что гарантирует высокие механические свойства. Такие стали используются в особо ответственных узлах, а стоимость их в несколько раз выше, чем обычных.

Химический состав сталей обыкновенного качества

Существует типизация по характеру застывания в изложнице и геометрической форме слитка (форма изложницы). Выделяют спокойную, полуспокойную и кипящую.

Углеродистая сталь

Углеродистая сталь выплавляется без добавления каких-либо легирующих элементов и бывает обычной и качественной.

Стали обычного качества принято делить на следующие группы:

  • группа А — обеспечивается по механическим свойствам. Изделия из сталей этой группы применяются для последующей сварки, ковки и т.д. Причем, заявляемые мех. свойства могут изменяться. (Ст3, Ст5кп.).
  • группа Б – сталь обеспечивается по хим. составу. Применяется для изготовления деталей, при обработке которых, могут изменяться механические характеристики определяемые составом.

Сталь из группы Б подразделяется на 2 категории:

Механические

  • Прочность. Это свойство обуславливает способность металла выдерживать значительную внешнюю нагрузку, не разрушаясь. Количественно этот показатель характеризуется пределом текучести и пределом прочности. Предел прочности. Максимальное механическое напряжение, при превышении которого сталь разрушается.
  • Предел текучести. Данный параметр показывает механическое напряжение, при превышении которого материал продолжает удлиняться в условиях отсутствия нагрузки.

Пластичность. Благодаря этому свойству металл изменяет свою форму под действием внешней нагрузки и сохраняет ее при отсутствии внешнего воздействия. Количественно это свойство оценивается относительным удлинением при растяжении и углом загиба.

Ударная вязкость. Обозначает способность металла сопротивляться динамическим нагрузкам. Количественно эта характеристика оценивается работой, которая требуется для разрушения образца, отнесенной к площади его поперечного сечения.

Твердость. Это свойство позволяет металлу сопротивляться попаданию в него твердых тел. Количественно характеризуется нагрузкой, отнесенной к площади отпечатка при вдавливании алмазной пирамиды (метод Виккерса) или стального шарика (метод Бринелля).

Другие классификационные признаки

По способу раскисления

Различают три вида сталей: кипящие, полуспокойные, спокойные. При равном содержании углерода эти сплавы имеют одинаковые характеристики прочности и разные – пластичности.

  • Для раскисления кипящих сталей (кп) применяют марганец. Для них характерны: значительная химическая и структурная неоднородность слитка. Благодаря малому содержанию кремния, стали поддаются холодной штамповке. Не применяются для создания изделий для эксплуатации в холодных климатических условиях.
  • Полуспокойные (пс). Раскисляются марганцем, в ковше – алюминием.
  • Спокойные (сп). Для раскисления применяются кремний, марганец, алюминий. Выход годного составляет примерно 85%. Для слитка характерна плотная однородная структура.

По качеству

  • Углеродистые стали обыкновенного качества – их маркировка осуществляется по ГОСТу 380-2005. Они обозначаются индексом Ст и цифрой – номером марки. Чем больше номер, тем выше содержание углерода, больше твердость и меньше пластичность. В конце ставится обозначение способа раскисления: кп, пс, сп. Используются в изготовлении неответственных строительных конструкций, крепежных элементов, труб, листов, фланцев.
  • Качественные углеродистые конструкционные стали обозначают двузначными числами, равными количеству углерода в сотых долях процента. В конце указывается индекс раскисления (кроме спокойных сталей).

По назначению

В зависимости от того, какие функции будут выполнять углеродистые стали, их разделяют на конструкционные и инструментальные. Инструментальные сплавы используются в производстве режущего и ударного инструмента. По качеству их разделяют на качественные (У8, У10, У12, У13) и высококачественные (У8А, У10А, У12А), где буква «У» означает углеродистая, число – сотые доли процента.

Маркировка стали

Сталь относится к многочисленной группе используемых материалов. Марка стали обозначает, к какой группе относится тот или иной сплав. Зачастую, марка позволяет определить основные свойства стали (износоустойчивость, выдержку температур, сопротивляемость коррозии и т.д.). На некоторых видах марка стали позволяет установить процентное соотношение железа и углерода, а также входящие в состав дополнительные элементы.

Расшифровка марки позволяет понять, к какой группе относится конечное изделие или сам сплав. Групп выделяют всего три:

  • Конструкционные;
  • Строительные;
  • Инструментальные.

Последняя группа в свою очередь делиться на несколько небольших подвидов.

Конструкционные стали

Применяется для изготовления крупногабаритных изделий, металлопрокатных единиц, а также конструкций с высоким коэффициентом свариваемости. Делятся на две разновидности: легированные и углеродистые стали. Легированная сталь должна состоять наполовину из железа, остальная часть – углерод и посторонние примеси, придающие сплаву максимальную прочность. Выделяют четыре категории качества этой стали:

  • Стандартное качество. Количество посторонних примесей практически равно нулю. Обозначается буквами «Ст»;
  • Качественная или обычная. Количество посторонних элементов в составе достигает 0,040%. Как правило, никак не маркируется;
  • Высококачественная. Зачастую, в нее добавляют хром или никель, в процентном соотношении 0,030% на 1 кг сплава. В обозначении присутствует буква «А»;
  • Легированная сталь повышенного качества. Высокопрочный продукт, с 0,015% лишних элементов. В середине обозначения, после слова «сталь» вставляется буква «Ш».

Существует отдельный вид, вернее вторичная категория конструкционных сталей – быстрорежущие. Они подходят для многоступенчатой обработки, в результате которой можно добиться идеально ровной поверхности изделия, с высокими показателями прочности, твердости и устойчивости к коррозии. Термообработка позволяет закалить сталь до максимально допустимого уровня, но при условии, что процент содержания углерода не будет превышать 0,32%. Эта марка стали отмечается буквами «КБ».

Инструментальные

Как можно понять из названия, основное применение этих сталей – изготовка инструментов широкого спектра пользования. К примеру, изготавливаются инструменты для дальнейшей обработки металлопродукции, также применяется для стандартных бытовых инструментов (гаечный ключ, молоток и т.д.). Усиленная поверхность позволяет использовать конечное изделие по назначению, при этом, не боясь за то, что оно может деформироваться. Соотношение железа и углерода составляет 97,6% к 2,4%, что приблизительно равно самому слабому сплаву чугуна. Однако, это все еще инструментальная сталь с очень высоким коэффициентом прочности. Маркировка – буква «У».

Строительные

Применяются исключительно в строительной отрасли, но разных течениях. Один из возможных способов применения – в качестве опорных конструкций многоэтажного здания. Стальные сваи выдерживают многотонный вес конструкции, при этом практически не деформируются. На изделии или первоначальном материале обозначается буквой «С», в начале обозначения.

И это далеко не весь список возможной маркировки. Зачастую, на каждом изделии присутствует длинный ряд из обозначений, в котором одной или двумя буквами описывается уровень качества, прочности, входящие в состав продукта или первичного материала примеси и т.д. Желательно научиться владеть терминологическим языком маркировки сталей, чтобы в нужный момент осуществить грамотный выбор.

Раскислители: виды и функции

В качестве раскислителей используют ферросилиций в количестве 0,12-0,3% по массе, ферромарганец, алюминий – до 0,1%, титан.

Негативное последствие раскисления – образование усадочной раковины больших размеров. Для ее удаления приходится отрезать от слитка спокойной стали до 16% по массе. Из-за такой потери металла, а также затрат на раскисляющие добавки стоимость спокойной стали существенно превышает цену кипящего металла.

Раскисляющие добавки, соединяясь со свободным кислородом, находящимся в сплаве, решают следующие задачи:

  • снижают негативное влияние свободного кислорода на формирующуюся структуру слитка;
  • поддерживают в течение длительного периода высокую температуру стали, что обеспечивает максимальное шлако- и газоудаление;
  • способствуют получению металла мелкозернистой, однородной структуры, поскольку образующиеся силикаты и алюминаты повышают число центров кристаллизации. Это обуславливает измельчение зерен и улучшает качество и механические характеристики металла.

По применению различают:

Класс I – Сталь строительная, применяемая для строительных целей. По химическому составу – эта сталь главным образом углеродистая, а по способу производства – сталь обыкновенного качества (рядовая). Эта сталь, как правило, не подвергается термической обработке (закалке) и используется в состоянии, полученном обработкой давлением. Однако в последнее время показана возможность упрочнения этой стали в результате закалки с прокатного нагрева.

Класс II – сталь машиностроительная (конструкционная). По химическому составу – это сталь углеродистая или легированная, по способу производства – качественная или высококачественная. Большая часть стали этого класса подвергается термической обработке. Для менее ответственных или малонагруженных деталей болты, клинья, дышала, валы маломощных механизмов и т. п) применяются также более дешевая сталь обыкновенного качества марок Ст.4, Ст.5, Ст.6, и Ст.7. Кроме того применяют стали марок Ст.2 и Ст.3, используемые главным образом для строительных целей.

Класс III – сталь инструментальная. По химическому составу сталь углеродистая и легированная, а по способу производства – качественная и очень редко (для наименее ответственного, например, слесарного инструмента) рядовая сталь. Инструментальная сталь по содержанию и по структуре – главным образом заэвтектоидная сталь, этим она заметно отличается от строительной и конструкционной стали (доэвтектоидной стали). Лишь в особых случаях инструментальная сталь применяется в качестве конструкционной для деталей машин специализированного назначения 9шарикоподшипники, пружины). Для инструментов некоторых типов (например, для молотовых штампов) применяется также доэвтектоидная сталь.

Класс IV – сталь с особыми физическими свойствами. По химическому составу – это легированная сталь а по способу производства – высококачественная или качественная сталь, требующая в отдельных случаях соблюдения специальных условий выплавки (например, в вакууме, электрошлаковым переплавом или в атмосфере инертных газов) и последующей обработки.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий