Обработка полученных результатов
После тестирования будут получены либо разрушение, либо деформация. В первом случае это требуется зафиксировать, а затем продолжить тесты, но с использованием небольших усилий. А во втором следует подвергнуть итоги математическим вычислениям по указанной выше формуле.
В статье мы рассказали, как обозначается ударная вязкость и как ее узнать. В качестве завершения темы посмотрим видео:
На сайте вы сможете узнать о других свойствах металлов, а также найти широкий перечень оборудования для ленточного пиления. Переходите в наш каталог, чтобы узнать больше.
Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам;; 8 (800) 707-53-38. Они ответят на все ваши вопросы.
Ползучесть.
Ползучестью (или крипом) называется медленное нарастание пластической деформации металла под действием постоянной нагрузки
С появлением воздушно-реактивных двигателей, газовых турбин и ракет стали приобретать все более важное значение свойства материалов при повышенных температурах. Во многих областях техники дальнейшее развитие сдерживается ограничениями, связанными с высокотемпературными механическими свойствами материалов. При нормальных температурах пластическая деформация устанавливается почти мгновенно, как только прикладывается соответствующее напряжение, и в дальнейшем мало увеличивается
При повышенных же температурах металлы не только становятся мягче, но и деформируются так, что деформация продолжает нарастать со временем. Такая зависящая от времени деформация, или ползучесть, может ограничивать срок службы конструкций, которые должны длительное время работать при повышенных температурах
При нормальных температурах пластическая деформация устанавливается почти мгновенно, как только прикладывается соответствующее напряжение, и в дальнейшем мало увеличивается. При повышенных же температурах металлы не только становятся мягче, но и деформируются так, что деформация продолжает нарастать со временем. Такая зависящая от времени деформация, или ползучесть, может ограничивать срок службы конструкций, которые должны длительное время работать при повышенных температурах.
Чем больше напряжения и чем выше температура, тем больше скорость ползучести. Типичные кривые ползучести представлены на рис. 3. После начальной стадии быстрой (неустановившейся) ползучести эта скорость уменьшается и становится почти постоянной. Перед разрушением скорость ползучести вновь увеличивается. Температура, при которой ползучесть становится критической, неодинакова для разных металлов. Предметом забот телефонных компаний является ползучесть подвесных кабелей в свинцовой оболочке, работающих при обычных температурах окружающей среды; в то же время некоторые специальные сплавы могут работать при 800° С, не обнаруживая чрезмерной ползучести.
Срок службы деталей в условиях ползучести может определяться либо предельно допустимой деформацией, либо разрушением, и конструктор должен всегда иметь в виду эти два возможных варианта. Пригодность материалов для изготовления изделий, рассчитанных на длительную работу при повышенных температурах, например лопаток турбин, трудно оценить заранее. Испытания за время, равное предполагаемому сроку службы, зачастую практически невозможны, а результаты кратковременных (ускоренных) испытаний не так просто экстраполировать на более длительные сроки, поскольку может измениться характер разрушения. Хотя механические свойства жаропрочных сплавов постоянно улучшаются, перед металлофизиками и материаловедами всегда будет стоять задача создания материалов, способных выдерживать еще более высокие температуры. См. также
МЕТАЛЛОВЕДЕНИЕ ФИЗИЧЕСКОЕ.
Другие испытания
Вместо маятника может использоваться молот. Помимо ударной прочности заготовки из стали и металла требуется проверить на растяжку и кручение, на излом. Все это дает полную комплексную картину о том или ином материале для строительства.
Таблица с показателями
Каждый раз проводить эксперименты не требуется, так как большинство из них уже произведено. Достаточно только пользоваться предложенными ГОСТами. Вот показатели различных наиболее распространенных марок:
Сталь | Толщина проката | Ударная вязкость, Дж/см2, не менее | |||
KCU | KCV | ||||
Ст3пс | 3,0 — 5,0 | — | 49 | — | 9,8 |
Ст3сп | 5,1 — 10,0 | 108 | 34 | — | |
Ст3Гпс | 10,1 — 26,0 | 98 | 29 | — | |
Ст3Гсп | 26,1 — 40,0 | 88 | — | — | |
Для Ст3кс — не нормируется |
Определение: в чем измеряется ударная вязкость металла
Первые испытания с маятником были предложены Жоржем Шарпи, именно по этой причине его метод используется до сих пор и назван его именем. Его мысль заключалась в следующем: надрез увеличивает чувствительность. Проверка сопровождается охлаждением окружающих условий, а вместе с тем переходом металла от пластичного состояния в хрупкое.
Метод Шарпи
Он заключается в двух последовательных действиях:
- надрез бруска;
- влияние с различной скоростью и массой.
Соответственно приведем формулу по Шарпи КС = К / F, где:
- К – это работа, то есть сила, которая обычно складывается из веса гири и скорости его движения.
- F – это площадь воздействия.
Алгоритм проведения (схема) испытания на ударную вязкость
- Заготовка крепится двумя концами на двух копрах так, чтобы надрез был напротив того места, куда будет направлена сила.
- Маятник поднимается на верхнюю часть – максимальный размах.
- При падении с этой высоты происходит разрушение образца с последующим поднятием на меньшее расстояние.
2.4. Механические свойства металлов и сплавов
Механическими называют свойства, которые определяются с воздействием силы. К ним относятся: прочность, твёрдость, пластичность, упругость, ударная вязкость и жаропрочность металлов.
Прочность – способность металла сопротивляться разрушению при действии на него внешних сил. Прочность – одно из важных свойств металлов. Для точного определения и измерения прочности из металла или сплава изготовляют образец и подвергают
его испытанию на специальной разрывной машине, которая постепенно, но с возрастающей силой растягивает образец до полного его разрыва. Наибольшее напряжение, которое может выдержать образец металла не разрушаясь, называется пределом прочности
для данного металла или временным сопротивлением разрыву.
Прочность определяется в испытаниях на растяжение, сжатие, изгиб, кручение и срез (Рис.2.1).
Рис.2.1. Определение прочности металла
Твердость – способность металла сопротивляться внедрению в него более твердого тела. Твердость определяют с помощью твердомеров внедрением стального закаленного шарика в металл (на приборе Бринелля) или внедрением алмазной пирамиды в хорошо
подготовленную поверхность образца (на приборе Роквелла). Чем меньше размер отпечатка, тем больше твердость испытуемого металла. Например, углеродистая сталь до закалки имеет твердость 100 . . . 150 НВ (по Бринеллю), а после закалки – 500
. . . 600 НВ (Рис.2.2).
Рис. 2.2. Схема определения твердости: а – по Бринеллю; б – по Рoквеллу; в – по Виккерсу
Ударная вязкость – способность металла сопротивляться действию ударных нагрузок.
Хрупкость – свойство металла разрушаться без заметной пластической деформации.
Вязкость – способность металла оказывать сопротивление ударным внешним силам. Вязкость – свойство обратное хрупкости.
Упругость – способность металла восстанавливать форму и объем после прекращения действий внешних сил. Высокой упругостью должны обладать стали и сплавы для изготовления рессор и пружин.
Пластичность – способность металла необратимо изменять свою форму и размеры под действием внешних и внутренних сил без разрушения.
Необходимость определения пластичности металлов вызывается тем, что пластичные металлы можно подвергать обработке давлением, т. е. ковать, штамповать или на прокатных станах превращать слитки металлов в полосы, листы, прутки, рельсы и многие другие
изделия и заготовки.
В противоположность пластичным хрупкие металлы под действием нагрузки разрушаются без изменения формы. При испытании хрупкие образцы разрушаются без удлинения, внезапно. Хрупкость является отрицательным свойством. Вполне пригодным для изготовления
деталей машин будет не только прочный, но и в определенной мере пластичный металл.
Интересно знать: Испытание строительной арматуры на растяжение
Способность металлов принимать значительную пластическую деформацию в горячем и холодном состоянии широко используется в технике. При этом изменение формы тела осуществляется преимущественно с помощью давящего на металл инструмента. Поэтому полученное
изделие таким способом называют обработкой металлов давлением или пластической обработкой. Обработка металлов давлением представляет собой важный технологический процесс металлургического производства. При этом обеспечивается не только придание
слитку или заготовке необходимой формы и размеров, но совместно с другими видами обработки существенно улучшаются механические и другие свойства металлов.
Прокатка, волочение, прессование, ковка, штамповка представляют собой различные виды обработки металлов давлением в пластическом состоянии. Среди различных методов пластической обработки прокатка занимает особое положение, поскольку данным способом
производят изделия, пригодные для непосредственного (в состоянии поставки) использования в строительстве и машиностроении (шпунт, рельсы, профили сельскохозяйственного машиностроения и пр.).
Понятие металлов, сплавов и изделий из них. Классификация, свойства и область применения.
Металлы – простые вещества, обладающие в обычных условиях характерными свойствами: блеском и непрозрачностью ,высокой тепло- и электропроводностью, прочностью, твердостью, ковкостью, пластичностью, жаропрочностью и коррозийной стойкостью.
Для диагностических исследований, проводимых в рамках КИМВИ, используются классификации, основанные на физических, химических свойствах металлов и степени их распространенности. По этим показателям металлы подразделяются
на:
• легкие – алюминий, магний, титан, бериллий, литий, натрий;
• тяжелые – медь, свинец, никель, кобальт, олово, цинк, ртуть;
• тугоплавкие – вольфрам, молибден, ниобий, тантал, рений, хром;
• благородные (драгоценные) – золото, серебро, платина, палладий;
• радиоактивные – франций, радий, уран, актиний и актиниды;
• рассеянные – галлий, индий, таллий;
• магнитные – железо, никель, кобальт;
• редкоземельные – скандий, иттрий, лантан и лантаниды.
В промышленности металлы подразделяют на две основные группы: черные (на основе железа) и цветные (все остальные).
Металлы, которые производят и используют в ограниченном масштабе, называют редкими. К ним относят все рассеянные и редкоземельные металлы, большая часть тугоплавких, радиоактивные и некоторые легкие (бериллий, литий, рубидий
и цезий).
Сплавами
называются твердые кристаллические тела, получаемые при сплавлении металлов и металлов с неметалла-
ми. По химическому составу первые подразделяются на сплавы следующих металлов:
• черных (чугун, сталь);
• цветных (алюминиевые – дюралюминий, силумин; медные – бронзы, латуни; свинцовые (баббиты, припой); магние-
вые, титановые и пр.);
• драгоценных (золотые, серебряные, платиновые и др.).
Особенности собирания объектов из металлов и сплавов.
Специфические свойства металлов облегчают поиск соответствующих объектов,даже в случаях, когда
последние сокрыты под землей, в воде, в тайниках и пр. С этой целью обычно используются металлоискатели разных модификаций, предназначенные для обнаружения изделий, изготовленных как из черных, так и из цветных металлов, на различном удалении.
Обращаться с металлическими объектами при их изъятии нужно таким образом, чтобы не поставить под сомнение возможность дальнейшего исследования не только материала изделий, но и имеющихся на их поверхности загрязнений (например, наслоений материалов взломанных преград на рабочих поверхностях предполагаемого орудия взлома), а также проведения различных традиционных криминалистических экспертиз: трасологических, дактилоскопических, баллистических и
пр. Поэтому замки и запирающие устройства изымаются в том состоянии, в котором обнаружены; проверять работу запирающего механизма на месте происшествия нельзя.
При изъятии пуль, дроби и картечи с целью сохранения следов на них
запрещается пользоваться пинцетами, плоскогубцами, щипцами и другими подобными предметами. Каждый из подобных предметов упаковывается отдельно в бумагу или ткань.
Поиск металлических опилок и стужек проводится визуально, а также при помощи дактилоскопической магнитной кисти, конец
которой обернут чистой бумагой или полиэтиленом, и фиксируются дактилоскопическими пленкам.
При изъятии металлов в виде порошка, напротив, пользоваться пылесосом и липкой пленкой недопустимо. Соответствующие пробы из значительных объемов отбираются при помощи шпателей и помещаются в стеклянные плотно закрываемые сосуды или полиэтиленовые пакетики, которые после этого запаиваются.
Изымаемая металлическая ртуть упаковывается только в герметично закрываемые стеклянные сосуды.
Если обнаруженные металлические объекты сырые, их необходимо просушить и упаковать в полиэтиленовые пакеты с
тем, чтобы исключить возможность их дальнейшей коррозии.
Предметы, на поверхности которых предполагается наличие микрочастиц или наслоений металла, как правило, изымаются целиком и упаковываются в полиэтилен или бумагу.
каждый предмет упаковывается в отдельный полиэтиленовый пакет.
Изъятые объекты следует предохранять герметичной упаковкой от воздействия атмосферы воздуха, влаги и других коррозийных сред.
Определение — механические свойство — металл
Определение — механические свойство — металл
Определение механических свойств металлов имеет настолько большое значение, что при заводах созданы специальные лаборатории с оборудованием для выполнения соответствующих испытаний.
Определения механических свойств металлов при нагреве принципиально отличаются от выполняемых при 20 С. Эти температуры следующие: 300 — 450 С для сталей, — 100 С для алюминиевых и — — 300 С для титановых сплавов.
Определение механических свойств металлов имеет настолько большое значение, что при заводах созданы специальные лаборатории с оборудованием для выполнения соответствующих испытаний.
Определение механических свойств металла крюков должно производиться по ГОСТ 2335 — 50, группа О, отделом технического контроля ( ОТК) завода-изготовителя поковок крюков.
Определение механических свойств металла крюков должно производиться отделом технического контроля ( ОТК) завода-изготовителя поковок крюков.
Для определения механических свойств металла по твердости созданы переносные портативные приборы с механическим и электромагнитным креплением к оборудованию. В качестве примера на рис. 15 — 11 изображена схема прибора МЭИ-ТЗ с механическим креплением для определения твердости вдавливанием. Прибор состоит из ручного нагружающего механизма, пружинного силоизмеритель-ного механизма, микроскопа и приспособления для крепления к паропроводу.
Для определения механических свойств металлов при статическом нагружении в зависимости от цели испытания применяют механические или оптико-механические тензометры двух видов: несложные приборы для определения условного предела текучести, при помощи которых линейные деформации можно измерять с точностью до 0 01 мм; более точные тензометры для определения предела пропорциональности и предела упругости, когда деформации требуется измерять с точностью до 0 5 мк.
Для определения механических свойств металлов и сплаков испытывают стандартные образцы. Механические испытания в зависимости от характера действия нагрузки могут быть статические, при которых нагружение производится медленно и нагрузка возрастает плавно или остается постоянной длительное время, динамические, при которых нагрузка на образец возрастает мгновенно, и повторно-переменные, при которых изменяются величина и направление действия нагрузки.
Для определения механических свойств металлов при статическом нагружении применяются в зависимости от цели испытания механические или оптико-механические тензометры двух видов: несложные приборы для определения условного предела текучести а0) 2, при помощи которых линейные деформации могут измеряться с точностью до 0 01 мм; более точные тензометры для определения предела пропорциональности и предела упругости, когда деформации требуют измерения с точностью до 0 5 мк.
Для определения механических свойств металла каждой плавки испытывается один образец. В случае несоответствия металла образца установленным требованиям необходимо произвести повторное испытание двух образцов. Если же вновь будут получены неудовлетворительные результаты, то все детали данной плавки разрешается подвергнуть повторной термической обработке и вновь испытать образцы, как указывалось ранее. В случае неудовлетворительных результатов испытаний образцов после повторной термической обработки все детали этой плавки должны быть забракованы.
Для определения механических свойств металлов и сплавов испытывают стандартные образцы. Механические испытания в зависимости от характера действия нагрузки могут быть статические, при которых нагружение производится медленно и нагрузка возрастает плавно или остается постоянной длительное время, динамические, при которых нагрузка на образец возрастает мгновенно, и повторно-переменные, при которых изменяются величина и направление действия нагрузки.
Для определения механических свойств металлов и сплавов проводят различные испытания.
Страницы:
1
2
3
4
Физические свойства
Среди основных общих физических свойств металлов можно выделить:
- Плавление.
- Плотность.
- Теплопроводность.
- Тепловое расширение.
- Электропроводность.
Важным физическим параметром металла является его плотность или удельный вес. Что это такое? Плотность металла – это количество вещества, которое содержится в единице объема материала. Чем меньше плотность, тем металл более легкий. Легкими металлами являются: алюминий, магний, титан, олово. К тяжелым относятся такие металлы как хром, марганец, железо, кобальт, олово, вольфрам и т. д. (в целом их имеется более 40 видов).
Способность металла переходить из твердого состояния в жидкое, именуется плавлением. Разные металлы имеют разные температуры плавления.
Скорость, с которой в металле проводится тепло при нагревании, называется теплопроводностью металла. И по сравнению с другими материалами все металлы отличаются высокой теплопроводностью, говоря по-простому, они быстро нагреваются.
Помимо теплопроводности все металлы проводят электрический ток, правда, некоторые делают это лучше, а некоторые хуже (это зависит от строения кристаллической решетки того или иного металла). Способность металла проводить электрический ток называется электропроводностью. Металлы, обладающие отличной электропроводностью, это золото, алюминий и железо, именно поэтому их часто используют в электротехнической промышленности и приборостроении.
Основные механические свойства металлов и сплавов
Свойство материалов принимать первоначальную форму после прекращения действия внешних сил называется упругостью, а деформация, исчезающая после снятия нагрузки, получила название упругой. Если к детали прикладывать все возрастающую нагрузку, то при достижении ею определенных значений и после прекращении ее действия деталь не примет своей первоначальной формы, а останется деформированной. Такая деформация называется пластической. Способность материала деформироваться под действием внешних нагрузок не разрушаясь и сохранять измененную форму после прекращения действия нагрузок называется пластичностью.
Материалы, не способные к пластическим деформациям, называются хрупкими. Такие материалы при избыточной нагрузке или под действием удара разрушаются внезапно. К хрупким материалам относятся (стекло, камень, чугун, закаленная сталь и др).
Важным свойством материалов, наряду с упругостью и пластичностью, является прочность. Она характеризуется максимальной нагрузкой, которую выдерживает материал детали не разрушаясь.
Детали машин в зависимости от условий работы должны обладать определенными механическими свойствами (прочностью, упругостью и пластичностью).
Прочность, упругость и пластичность металлов определяют при испытании образцов круглой или плоской формы на растяжение. Основными параметрами являются размер диаметра d и расчетная, контролируемая, длина l образца (рис. 1).
Рис. 1. Круглый образец до (а) и после (б) испытаний
Испытания выполняют на разрывных машинах.
Для получения сравнимых результатов введено понятие нормальное напряжение. Нормальным напряжением называют нагрузку, приходящуюся на единицу площади поперечного сечения образца. Нормальное напряжение обозначается греческой буквой σ (сигма).
Для нагрузки Р в ньютонах (Н) и площади поперечного сечения F в мм2, σ = Р/ F Па (паскаль).
Отношением наибольшей нагрузки, которую выдержал образец до разрыва, к первоначальной площади его поперечного сечения определяется величина предела прочности. Пределом прочности называется напряжение, отвечающее максимальной нагрузке, которую выдержал образец во время испытания, которое обозначается σв и выражается в Па.
Важная характеристика материалов — удельная прочность, которая определяется отношением предела прочности к удельному весу металла. Эта характеристика имеет большое значение при выборе материала, когда необходимо уменьшить массу машины.
Показатели пластичности, характеризующие способность металла деформироваться не разрушаясь, называют относительное удлинение и относительное сужение. Для получения этих показателей обе половины разорванного образца плотно прижимают друг к другу и измеряют длину рабочей части ( lк), а также диаметр образца в том месте, где произошел paзрыв (dк). Относительное удлинение обозначается греческой буквой δ и измеряется в процентах. Его определяют формуле:
где l – первоначальная расчетная длина; lк – расчетная длина после испытания.
Относительное сужение поперечного сечения образца Ψ, также измеряемое в процентах, находят по формуле:
(2)
где F — площадь поперечного сечения образца до испытания; Fk — площадь сечения образца в месте разрыва (в шейке).
Пределом текучести называется наименьшее растягивающее напряжение, при котором деформация продолжает расти без изменения нагрузки, которое обозначается σт и выражается в Па.
Чем больше относительное удлинение и относительное сужение поперечного сечения образца, тем более пластичен металл. Так, например, техническое железо при растяжении до разрыва удлиняется в 1,5 раза, у серого чугуна относительное удлинение и относительное сужение близки к нулю. Для изготовления большинства деталей машин и конструкций используют относительно пластичные материалы, так как они не подвержены опасности внезапного разрушения.
При длительной эксплуатации детали машин подвергаются повторно-переменным нагрузкам (растяжение-сжатие). При напряжениях, меньших предела текучести или предела упругости, они могут внезапно разрушиться. Это явление называется усталостью металлов.
Способность металлов работать в условиях многократных повторноили знакопеременных нагрузок, определяют их предел выносливости (или усталости). Пределом выносливости (усталости) называют максимальное напряжение, которое выдерживает материал, не разрушаясь, при достаточно большом числе повторно-переменных нагружений (циклов).
Для стальных образцов эту характеристику устанавливают при 10 млн. циклов, для цветных металлов — при 100 млн. циклов. Предел выносливости обозначают греческой буквой σ-1 и измеряют в Па.
Напряжение
Напряжением называется возникновение внутренних сил с различными векторами направленности при внешнем воздействии. Эта величина может быть внутренняя или поверхностная. Является обязательным для расчета при изготовлении несущих стальных конструкций или элементов оборудования, подвергающихся постоянным нагрузкам.
Главным условием для измерения этого показателя является равномерная нагрузка, действующая в определенном направлении. При этом возникает напряженное состояние образца, который подвергается воздействию уравновешенных сил. Помимо этого, воздействие может быть односекторным или много векторным.
Существуют следующие виды напряжения материалов и их сплавов:
- остаточное. Формируется уже после окончания воздействия внешних факторов. К ним относятся не только механические силы, но и быстрый нагрев или охлаждение образца;
- временные. Возникают только при внешних нагрузках. После их прекращения изделие приобретает изначальные характеристики;
- внутреннее. Чаще всего происходит в результате неравномерного нагрева заготовок.
Напряжение является отношением силы воздействия на площадь, на которую она прилагается.
Химические свойства
Все мы, так или иначе, но сталкиваемся с химией в нашей повседневной жизни. Например, во время приготовления еды, растворение поваренной соли в воде является простейшей химической реакцией. Вступают в разнообразные химические реакции и металлы, а их способность реагировать с другими веществами это и есть их химические свойства.
Среди основных химических свойств или качеств металлов можно выделить их окисляемость и коррозийную стойкость. Реагируя с кислородом, металлы образуют пленку, то есть проявляют окисляемость.
Аналогичным образом происходит и коррозия металлов – их медленное разрушение по причине химического или электрохимического взаимодействия. Способность металлов противостоять коррозии называется их коррозийной стойкостью.