Алюминий

Применение

Файл:Aluminum Metal.jpg

Кусок алюминия и американская монетка.

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной плёнкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевая фольга в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий).

Электропроводность алюминия сравнима с медью, при этом алюминий дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Правда, у алюминия как электротехнического материала есть неприятное свойство — из-за прочной оксидной плёнки его тяжело паять.

  • Благодаря комплексу свойств широко распространён в тепловом оборудовании.
  • В производстве строительных материалов как газообразующий агент.
  • Алитированием придают коррозионную и окалиностойкость стальным и другим сплавам, например клапанам поршневых ДВС, лопаткам турбин, теплообменной аппаратуре, а также заменяют цинкование.
  • Сульфид алюминия используется для производства сероводорода.
  • Идут исследования по разработке пенистого алюминия как особо прочного и лёгкого материала.

В качестве восстановителя

  • Как компонент термита, смесей для алюмотермии
  • Алюминий применяют для восстановления редких металлов из их оксидов или галогенидов.

Сплавы на основе алюминия

В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе.

  • Алюминиево-магниевые сплавы обладают высокой коррозионной стойкостью и хорошо свариваются; из них делают, например, корпуса быстроходных судов.
  • Алюминиево-марганцевые сплавы во многом аналогичны алюминиево-магниевым.
  • Алюминиево-медные сплавы (в частности, дюралюминий) можно подвергать термообработке, что намного повышает их прочность. К сожалению, термообработанные материалы нельзя сваривать, поэтому детали самолётов до сих пор соединяют заклёпками.
  • Алюминиево-кремниевые сплавы (силумины) лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов.
  • Комплексные сплавы на основе алюминия: авиаль.
  • Алюминий переходит в сверхпроводящее состояние при температуре 1,2 Кельвина.

Алюминий как добавка в другие сплавы

Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборов используют (наряду с другими сплавами) фехраль (Fe, Cr, Al).

Ювелирные изделия

Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Мода на них сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Алюминий и его соединения в ракетной технике

Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твердых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее:

  • Алюминий: горючее в ракетных топливах. Применяется в виде порошка и суспензий в углеводородах и др.
  • Гидрид алюминия.
  • Боранат алюминия.
  • Триметилалюминий.
  • Триэтилалюминий.
  • Трипропилалюминий.

Теоретические характеристики топлив, образованных гидридом алюминия с различными окислителями.

ОкислительУдельная тяга(Р1,сек)Температура сгорания °СПлотность топлива г/см3Прирост скорости, ΔVид,25, м/секВесовое содерж.горючего %
Фтор348,4 сек5009°С1,5045328 м/сек25%
Тетрафторгидразин327,4 сек4758°С1,1934434 м/сек19%
ClF3287,7 сек4402°С1,7644762 м/сек20%
ClF5303,7 сек4604°С1,6914922 м/сек20%
Перхлорилфторид293,7 сек3788°С1,5894617 м/сек47%
Окись фтора326,5 сек4067°С1,5115004 м/сек38,5%
Кислород310,8 сек4028°С1,3124428 м/сек56%
Перекись водорода318,4 сек3561°С1,4664806 м/сек52%
N2O4300,5 сек3906°С1,4674537 м/сек47%
Азотная кислота301,3 сек3720°С1,4964595 м/сек49%

Предостережение

Алюминий не заложен изначально в биологические организмы. Но человек получает его микродозы ежедневно – с пищей.

Им богаты горох, пшеница, рис, овсяный «геркулес». Доказана польза алюминия как стимулятора регенерации, развития тканей, работы ЖКТ, ферментов.

По стандартам РФ, в литре питьевой воды не должно быть более 0,2 мг алюминия.

Алюминиевой посудой пользоваться можно, но ограниченно. Безопасны готовка, подогрев, хранение продуктов с нейтральными характеристиками. Приготовление кислых блюд (щи, томат, компот) опасно. Алюминий поступит в еду, создавая избыточную дозу при попадании в организм, плюс «железный» привкус.

Химические свойства

Являясь довольно химически активным металлом, алюминий активно сопротивляется коррозии. Это происходит благодаря образованию на его внешней поверхности очень прочной оксидной пленки под действием кислорода.

Прочная пленка оксида хорошо защищает поверхность даже от таких сильных кислот, как азотная и серная. Это качество нашло распространение в химии и промышленности для транспортировки концентрированной азотной кислоты.

Разрушить пленку можно сильно разбавленной азотной кислотой, щелочами при нагреве или при контакте с ртутью, когда на поверхности образуется амальгама. В перечисленных случаях оксидная пленка не является защитным фактором и алюминий активно взаимодействует с кислотами, щелочами и окислителями. Оксидная пленка также легко разрушается в присутствии галогенов (хлор, бром). Таким образом, соляная кислота HCl, хорошо взаимодействует с алюминием при любых условиях.

Химические свойства алюминия зависят от чистоты металла. Использование состава легирующих присадок некоторых металлов, в частности марганца, позволяет увеличить прочность защитной пленки, повысив, таким образом, коррозионную устойчивость алюминия. Некоторые металлы, к примеру, никель и железо, способствуют снижению коррозионную стойкость, но повышают жароустойчивость сплавов.

Оксидная пленка на поверхности алюминиевых изделий играет отрицательную роль при проведении сварочных работ. Мгновенное окисление ванны расплавленного металла при сварке не позволяет сформировать сварочный шов, поскольку окись алюминия имеет очень высокую температуру плавления. Для сварки алюминия используют специальные сварочные аппараты с неплавящимся электродом (вольфрам). Сам процесс ведется в среде инертного газа – аргона. При отсутствии процесса окисления сварочный шов получается прочным, монолитным. Некоторые легирующие добавки в сплавы дополнительно улучшают сварочные свойства алюминия.

Чистый алюминий практически не образует ядовитых соединений, поэтому активно используется в пищевой промышленности при производстве кухонной посуды, упаковки пищевых продуктов, тары для напитков. Оказывать негативное действие могут лишь некоторые неорганические соединения. Исследованиями также установлено, что алюминий не используется в метаболизме живых существ, его роль в жизнедеятельности ничтожна.

Источник

Свойства гидроксида алюминия

Гидроксид — самое распространенное соединение, которое образует алюминий. Свойства химические его такие же, как и у самого металла, — он амфотерный. Это значит, что он способен проявлять двойственную природу, вступая в реакции как с кислотами, так и со щелочами.

Сам по себе гидроксид алюминия — это белый студенистый осадок. Получить его легко при взаимодействии соли алюминия с щелочью или гидроксидом аммония. При взаимодействии с кислотами данный гидроксид дает обычную соответствующую соль и воду. Если же реакция идет с щелочью, то формируются гидроксокомплексы алюминия, в которых его координационное число равно 4. Пример: Na — тетрагидроксоалюминат натрия.

Алюминий и его сплавы

Алюминий – металл серебристо-белого цвета, характеризуется низкой плотностью, высокой электропроводностью, температура плавления 660° С. Механические свойства алюминия невысокие, поэтому в чистом виде как конструкционный материал применяется ограниченно.

Для повышения физико-механических и технологических свойств алюминий легируют различными элементами (Cu, Сr, Mg, Si, Zn, Mn, Ni).

В зависимости от содержания постоянных примесей различают:

  • алюминий особой чистоты марки А999 (0,001 % примесей);
  • алюминий высокой чистоты – А935, А99, А97, А95 (0,005…0,5 % примесей);
  • технический алюминий – А35, А3, А7, А5, А0 (0,15…0,5 % примесей).

Технический алюминий выпускают в виде полуфабрикатов для дальнейшей переработки в изделия. Алюминий высокой чистоты применяют для изготовления фольги, токопроводящих и кабельных изделий.

Сплавы на основе алюминия классифицируются по следующим признакам:

  • по технологии изготовления;
  • по степени упрочнения после термической обработки;
  • по эксплуатационным свойствам.

Деформируемые сплавы

К неупрочняемым термической обработкой относятся сплавы:

  • алюминия с марганцем марки АМц;
  • алюминия с магнием марок АМг; АМгЗ, АМг5В, АМг5П, АМг6.

Эти сплавы обладают высокой пластичностью, коррозионной стойкостью, хорошо штампуются и свариваются, но имеют невысокую прочность. Из них изготовляют бензиновые баки, проволоку, заклепки, а также сварные резервуары для жидкостей и газов, детали вагонов.

В группе деформируемых алюминиевых сплавов, упрочняемых термической обработкой, различают сплавы:

  • нормальной прочности;
  • высокопрочные сплавы;
  • жаропрочные сплавы;
  • сплавы для ковки и штамповки.

Сплавы нормальной прочности

К сплавам нормальной прочности относятся сплавы системы Алюминий + Медь + Магний (дуралюмины, дюралюмины), которые маркируются буквой «Д». Дюралюмины (Д1, Д16, Д18) характеризуются высокой прочностью, достаточной твердостью и вязкостью. Для упрочнения сплавов применяют закалку с последующим охлаждением в воде. Закаленные дуралюмины подвергаются старению, что способствует увеличению их коррозионной стойкости.

Дуралюмины широко используются в авиастроении: из сплава Д1 изготовляют лопасти винтов, из Д16 – несущие элементы фюзеляжей самолетов, сплав Д18 – один из основных заклепочных материалов.

Высокопрочные сплавы

Высокопрочные сплавы алюминия (В93, В95, В96) относятся к системе Алюминий + Цинк + Магний + Медь. В качестве легирующих добавок используют марганец и хром, которые увеличивают коррозионную стойкость и эффект старения сплава. Для достижения требуемых прочностных свойств, сплавы закаливают с последующим старением. Высокопрочные сплавы по своим прочностным показателям превосходят дюралюмины, однако менее пластичны и более чувствительны к концентраторам напряжений (надрезам). Из этих сплавов изготовляют высоконагруженные наружные конструкции в авиастроении – детали каркасов, шасси и обшивки.

Жаропрочные сплавы

Жаропрочные сплавы алюминия (АК4-1, Д20) имеют сложный химический состав, легированы железом, никелем, медью и другими элементами. Жаропрочность сплавам придает легирование, замедляющее диффузионные процессы.

Детали из жаропрочных сплавов используются после закалки и искусственного старения и могут эксплуатироваться при температуре до 300° С.

Сплавы для ковки и штамповки

Сплавы для ковки и штамповки (АК2, АК4, АК6, АК8) относятся к системе Алюминий + Медь + Магний с добавками кремния. Сплавы применяют после закалки и старения для изготовления средненагруженных деталей сложной формы (АК6) и высоконагруженных штампованных деталей – поршни, лопасти винтов, крыльчатки насосов и др.

Литейные сплавы

Для изготовления деталей методом литья применяют алюминиевые сплавы систем Al-Si, Al-Cu, Al-Mg. Для улучшения механических свойств сплавы легируют титаном, бором, ванадием. Главным достоинством литейных сплавов является высокая жидкотекучесть, небольшая усадка, хорошие механические свойства.

Источник

Коррозия алюминия и методы его защиты

Алюминий и его сплавы отличаются отличной устойчивостью к разрушениям различного характера. Однако, несмотря на это — коррозия алюминия представляет собой не такое уж и редкое явление. Различные формы коррозии представляют собой основную причину порчи этих материалов. Для борьбы с разрушительными процессами необходимо обязательно понимать факторы, которые являются причиной их появления.

Коррозия алюминия представляет собой реакцию, которая имеет место между металлом и окружающей средой. Этот процесс может иметь как естественное, так и химическое происхождение. Самой распространенной формой разрушения металла можно назвать появление на его поверхности процессов ржавления.

Особенностью всех видов металлов можно назвать их свойство вступать в реакцию с водой и окружающей средой. Отличием для каждого вида металла считается только интенсивность данного процесса. К примеру, у благородных металлов типа золота скорость такой реакции не будет слишком быстрой, а вот железо, в том числе и алюминий, будут реагировать на воздействия такого характера достаточно быстро.

Можно выделить два фактора, которые оказывают непосредственное влияние на интенсивность протекания процесса коррозии. Одним из них можно назвать степень агрессивности окружающей среды, а вторым металлургическую или химическую структуру. Атмосфере, которая нас окружает, всегда характерен определенный уровень влажности. Кроме того, ей характерен определенный уровень загрязнений и отходов.

Если учесть, что свойства атмосферы часто определяются регионом и степенью индустриализации, на сегодняшний день можно выделить:

  • сельская местность (малая степень загрязнений и средний уровень влажности);
  • приморские области (средняя степень загрязнений и высокий уровень влажности);
  • городская местность (средний уровень влажности и средний уровень продуктов распадов жидкого топлива, серы и окислов углерода);
  • промышленные и индустриальные зоны (большое количество серы, окислов углеродов и кислот, а также средний уровень влажности)

Для большинства случаев, кислоты неорганического типа, даже при низкой концентрации смогут растворить алюминий. И даже натуральная пленка оксида алюминия не сможет стать достаточной защитой от возникновения коррозийных процессов.

Самыми мощными растворителями можно назвать фтор, калий и натрий. Кроме того, алюминию характерна довольно низкая сопротивляемость к соединениям хлора и брома. Весьма агрессивны к различным сплавам алюминиевых металлов, являются известковые и цементные растворы.

Можно выделить несколько разновидностей проявления коррозии алюминия и его сплавов:

  1. Поверхностная. Данный тип разрушения встречается чаще всего и является наименее вредоносным. Его легче всего заметить на поверхности. Это дает возможность своевременно использовать предохранительные средства. Поверхностные разрушения очень часто встречаются на анодированных профилях для строительства.
  2. Локальная. Такие разрушения проявляются в виде форм, углублений и пятен. Такой тип коррозии бывает поверхностного и междукристаллического типа. Разрушения такого характера являются особенно опасными, по причине того, что их достаточно сложно обнаружить. Такая коррозия очень часто разрушает именно труднодоступные части конструкций и узлов.
  3. Нитеподобная или филигранная. Этот вид разрушения алюминия часто появляется под покрытиями органического типа, а также на граничных поверхностях обработки. Нитеподобная коррозия появляется в ослабленных местах повреждения органического покрытия или краях отверстий;

Довольно часто, естественных антикоррозийных способностей алюминия и его сплавов для защиты от разрушений бывает недостаточно. А длительный период эксплуатации изделий из этих металлов, в обязательном порядке потребует использования дополнительных методов защиты. К самым частым методам протекции металлов от коррозии можно отнести:

  • анодирование окисление (исследования немецких специалистов показывают, что данный вид защиты используется на 15% от общего количества производства строительных профилей в мире);
  • покрытие поверхности металлов порошковыми составами;
  • защита от контакта с другими металлами

Анодирование

Анодированное покрытие представляет собой покрытие, которое создает на поверхности алюминия прочную пленку из оксида алюминия, которая не поддается воздействию агрессивных сред. Такая обработка позволяет создать на поверхности металла такой слой пленки, который просто не оставляет алюминию возможности контактировать с внешней средой и ограждает его от процессов окисления.

Токсичность

Несмотря на широкую распространённость в природе, ни одно живое существо не использует алюминий в метаболизме — это «мёртвый» металл. Отличается незначительным токсическим действием, но многие растворимые в воде неорганические соединения алюминия сохраняются в растворённом состоянии длительное время и могут оказывать вредное воздействие на человека и теплокровных животных через питьевую воду. Наиболее ядовиты хлориды, нитраты, ацетаты, сульфаты и др. Для человека токсическое действие при попадании внутрь оказывают следующие дозы соединений алюминия (мг/кг массы тела):

  • ацетат алюминия — 0,2—0,4;
  • гидроксид алюминия — 3,7—7,3;
  • алюминиевые квасцы — 2,9.

В первую очередь действует на нервную систему (накапливается в нервной ткани, приводя к тяжёлым расстройствам функции ЦНС). Однако свойство нейротоксичности алюминия стали изучать с середины 1960-х годов, так как накоплению металла в организме человека препятствует механизм его выведения. В обычных условиях с мочой может выделяться до 15 мг элемента в сутки. Соответственно, наибольший негативный эффект наблюдается у людей с нарушенной выделительной функцией почек.

Норматив содержания алюминия в воде хозяйственно-питьевого использования в России составляет 0,2 мг/л. При этом данная ПДК может быть увеличена до 0,5 мг/л главным государственным санитарным врачом по соответствующей территории для конкретной системы водоснабжения.

По некоторым биологическим исследованиям, поступление алюминия в организм человека было сочтено фактором в развитии болезни Альцгеймера, но эти исследования были позже раскритикованы, и вывод о связи одного с другим опровергался.

Соединения алюминия также, возможно, стимулируют рак молочной железы при применении антиперспирантов на основе хлорида алюминия. Но научных данных, подтверждающих это меньше, чем противоположных.

В ряде источников, авторство которых не указывается, содержатся утверждения о том, что алюминий якобы способен замещать кальций в костной ткани. Это противоречит научным данным, поскольку в электрохимическом ряду активности металлов алюминий стоит правее кальция — то есть, является менее химически активным металлом.

Химические свойства алюминия

С точки зрения химии, рассматриваемый металл — сильный восстановитель, который способен проявлять высокую химическую активность, будучи чистым веществом. Главное — это устранить оксидную пленку. В этом случае активность резко возрастает.

Химические свойства алюминия как простого вещества определяются его способностью вступать в реакции с:

  • кислотами;
  • щелочами;
  • галогенами;
  • серой.

С водой он не взаимодействует при обычных условиях. При этом из галогенов без нагревания реагирует только с йодом. Для остальных реакций нужна температура.

Можно привести примеры, иллюстрирующие химические свойства алюминия. Уравнения реакций взаимодействия с:

  • кислотами — AL + HCL = AlCL3 + H2;
  • щелочами — 2Al + 6H2O + 2NaOH = Na + 3Н2;
  • галогенами — AL + Hal = ALHal3;
  • серой — 2AL + 3S = AL2S3.

В целом, самое главное свойство рассматриваемого вещества — это высокая способность к восстановлению других элементов из их соединений.

Классификация алюминия по химическому составу

Литейные характеристики сплавов достигаются путем добавления в их состав кремния, который позволяет создать низкоплотный и при этом высокопрочный материал, в процессе отливки которого не образуются трещины, полости и другие дефекты – это весьма востребовано в тех случаях, когда требуется изготовить изделие сложной формы, часто представляющей из себя какую-то запчасть или составную деталь механизма.

По химическому составу литейные алюминиевые сплавы обычно разделяются на следующие категории:

  1. Силумины – являются наиболее распространенными литейными сплавами, имея в своем составе алюминий и кремний в качестве основного сплавляющего элемента. Силумины обладают средней прочностью, схожей со сталью, и рассчитаны на средние нагрузки. Стоит отметить дешевизну материала и его хорошую антикоррозийную способность, но среди минусов выделяются хрупкость и крошение при обработке;
  2. Медьсодержащие алюминиевые сплавы – содержат медь в качестве основного сплавляющего элемента, которая улучшает прочность и твердость сплава, способствует легкой обработки резанием, но при этом снижает литейные свойства. Так, в процессе отливки часто происходит усадка, образуются трещины. Другим недостатком является низкая коррозийная устойчивость, которая корректируется путем анодирования. Сплав отлично подходит для изготовления несложных деталей небольших размеров для машиностроительной отрасли;
  3. Алюминиево-магниевые сплавы – отличаются хорошей свариваемостью, антикоррозийными качествами и прочностной устойчивостью, характеризующейся способностью выдерживать постоянные рабочие нагрузки без образования микроповреждений в структуре материала. Сплав данного вида наиболее распространен для последующего применения во влажной среде, являясь востребованным материалом в судостроении и авиационной промышленности.

Технология

Технология литья деталей из алюминия в домашних условиях довольно проста, но требует тщательного выполнения требований и большого внимания к деталям. Наиболее простая технология заключается в заливке расплавленного алюминия в подготовленные формы. При этом необходимо иметь минимальный набор необходимого оборудования. Главной задачей является расплавление воска или парафина внутри формы с заменой пустот алюминием, после чего остывшую деталь можно легко достать. Первое, что нужно сделать – это подготовить опалубку, в качестве которой можно взять любую картонную коробку, например, из-под обуви, или изготовить ее из фанеры. В нее заливается парафин или воск. При работе с парафином следует учитывать некоторые особенности:

  1. Залитый в форму парафин очень быстро остывает, поэтому не следует ускорять этот процесс. Деталь должна остыть самостоятельно, это позволит сохранить однородную структуру. Для полного остывания нужно подождать около суток, после чего можно перейти к его обработке.
  2. Парафин может сильно просесть в центре заготовки, поэтому нужно учитывать этот факт при оценке необходимых габаритов заготовки.

Вырезать правильную форму из заготовки – очень трудная задача. Поэтому человек, не имеющий должного опыта, не сможет справиться с ней.

Форму для заливки алюминия следует изготовить из оргстекла, который прочно скрепляется с помощью герметика. После этого на дне подготовленного «аквариума» располагается заготовка, которую нужно закрепить, чтобы она не сместилась в процессе заливки гипсом. Сделать это можно с помощью пластилина.

Затем следует подготовить гипсовую смесь, которая приготавливается с добавлением мелкозернистого песка (в соотношении один к одному)

Это очень важно, так как чистый гипс содержит много влаги, которая испаряется при отливке детали и влияет на качество готового изделия

Стоит помнить, что гипс очень быстро застывает, поэтому выполнять работы нужно в быстром темпе. Полностью залив форму, ее стоит встряхнуть, чтобы избавиться от пузырьков воздуха. После застывания гипса форму из оргстекла необходимо снять. Затем следует удаление парафина. Это можно сделать, положив форму вверх ногами на горячий лист железа, разогреваемого на огне. Также можно прокипятить форму в воде, что позволит более тщательно избавиться от парафина. После этого гипсовую форму нужно высушить. Существует несколько способов расплавления алюминия, но технология литья в домашних условиях предусматривает самостоятельное изготовления тигельной печи или использование муфельной. Тигельная печь изготавливается только из огнеупорного кирпича. После расплавления металла можно начинать процесс литья алюминия. С помощью ложки из нержавеющей стали следует снять окисную пленку. Плавление металла можно попробовать произвести с помощью газовой горелки, которой будет достаточно при небольшом объеме.

Технология может видоизменятся в зависимости от требований к готовому изделию и имеющихся инструментов. Методом проб и ошибок можно добиться оптимальной технологии.

ПРИМЕНЕНИЕ

Украшение из алюминия

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость. Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 4 раза дешевле за килограмм, но, за счёт в 3,3 раза меньшей плотности, для получения равного сопротивления его нужно приблизительно в 2 раза меньше по весу. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при напылении проводников на поверхности кристаллов микросхем.
Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Так, Наполеон III заказал алюминиевые пуговицы, а Менделееву в 1889 г. были подарены весы с чашами из золота и алюминия. Мода на ювелирные изделия из алюминия сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Алюминий (англ. Aluminium) – Al

Молекулярный вес26.98 г/моль
Происхождение названияот латинского alumen
IMA статусутверждён в 1978

Обработка поверхности алюминия

Натуральная металлическая поверхность алюминия является эстетически привлекательной для многих изделий и без дополнительной обработки. Это натуральное защитное оксидное покрытие является прозрачным и его можно сделать толще путем анодирования. Этим достигается дополнительная защита поверхности без ущерба для внешнего вида изделия.

Категории

Алюминий позволяет применять большое количество способов обработки его поверхности.  Типы обработки поверхности разделяют на четыре широкие категории:

  • механические,
  • химические,
  • электролитические покрытия и
  • неэлектролитические покрытия.

Одни из них изменяют ее внешний вид, другие дают поверхности заданные свойства, например, коррозионную стойкость. Механически и химически можно создавать различную текстуру поверхности: от грубой до зеркально гладкой.

Анодирование

Анодирование алюминия дает возможность сделать естественную поверхность матовой или цветной.  Технология анодирования алюминия включает применение различных электролитов и электрических параметров — напряжения и силы тока (рисунок 9).

Рисунок 9 – Принцип анодирования алюминия

Окраска

Для алюминия широко применяют различные методы окраски: от нанесения «мокрой» краски до порошковой окраски (рисунок 10) и электролитического нанесения покрытий из других металлов.

 

Рисунок 10 – Вертикальная порошковая окраска алюминиевых профилей

История[]

Впервые получен в чистом виде электролизом, в 1825 году.

История алюминия.
В 1807 году английский химик Гэмфри Дэви открыл вещество под названием “alum” (“квасцы”), которое представляло собой соль неизвестного металла, этот металл был назван им “алюмиум”. Позднее, это название было преобразовано в “aluminium” (“алюминий”). Дэйви безуспешно пытался выделить этот металл с помощью электролиза (вещество практически не растворялось в воде).
В 1825 году датскому физику Эрстеду удалось выделить алюминий, как отдельный элемент.
Немецкий учёный Фридрих Вёлер в 1845 году провёл обширные исследования по изучению свойств этого металла, одно из которых была его необычайная лёгкость. Также он использовал новый способ получения алюминия.
AlCl3 + 3K = 3KCl + Al

В 1886 году Поль Эру во Франции и Чарльз Холл из Огайо одновременно изобрели способ получения алюминия с помощью электролитического метода. Оба этих учёных родились в 1863 году и умерли в 1914 году в возрасте 51 года. Согласно этому методу расплаву подвергался не сам Al2O3, а его раствор в расплавленном криолите Na3AlF6. Данный процесс проводится в электрических печах при температуре 960°C.
Способ, изобретённый двумя этими выдающимися учёными, используется и до сих пор.

Алюминиевые сплавы

Чем легируют алюминий

Чистый алюминий имеет очень низкую прочность и его применение как конструкционного материала весьма ограничено.

Когда в алюминий добавляют другие элементы — легирующие элементы — он повышает свою прочность благодаря различным упрочняющим механизмам.

Алюминий, в принципе,  возможно легировать большинством металлических элементов. Однако только некоторые из них имеют достаточную растворимость в твердом состоянии, чтобы быть основными легирующими элементами.

Наиболее важными легирующими элементами алюминия являются:

  • медь;
  • марганец;
  • магний;
  • кремний и
  • цинк.

Вместе с тем, значительное число других элементов оказывают заметный эффект на улучшение свойств алюминиевых сплавов. Их добавляют в небольших количествах. Эти элементы включают хром, тот же марганец и цирконий, которые применяют в основном для контроля зеренной структуры.

Максимальная растворимость легирующих элементов в алюминии обычно, но не всегда,  достигается при эвтектической температуре.  Растворимость легирующих элементов в твердом алюминии снижается со снижением температуры. Это изменение растворимости в твердом алюминии является основой для упрочнения алюминиевых сплавов за счет механизма старения.

Откуда железо в алюминии

Все промышленные сплавы содержат примерно от 0,1 до 0,4 % железа (по массе). Обычно железо в алюминиевом сплаве считается примесью. Его содержание зависит от исходной руды и технологии электролиза при его выплавке. Иногда железо добавляют намеренно для придания материалу особых свойств, например, до 1 % в сплавах для изготовления алюминиевой фольги.

Для чего добавки в алюминии

В комбинации с одним или более основными легирующими элементами часто применяют дополнительные элементы:

  • висмут,
  • бор,
  • хром,
  • свинец,
  • титан и
  • цирконий.

Эти элементы обычно применяют в малых количествах, как правило, до 0,1 %. Однако в некоторых алюминиевых сплавах содержание бора, свинца и хрома может достигать 0,5 %. Благодаря этим малым добавкам сплавы получают необходимые свойства для конкретных условий, такие как, хорошая текучесть при литье, высокое качество механической обработки, теплостойкость, коррозионная стойкость, высокая прочность.

Категории алюминиевых сплавов

Удобно разделять алюминиевые сплавы на две основных категории:

  • литейные сплавы и
  • деформируемые сплавы.

В каждой из этих категорий дальнейшее разделение основано главном механизме, который отвечает за формирование их свойств – термически упрочняемые сплавы и термически неупрочняемые сплавы. Сплавы последней группы получают свои конечные свойства в результате деформационной обработки – нагартовки. Поэтому иногда их называют более позитивно — деформационно упрочняемые или даже «нагартовываемые».

О сплавах 6060, 6063, АД31

«Рулят» в мировом производстве алюминиевых профилей сплавы серии 6ххх — алюминиевые сплавы легированные магнием и кремнием — каждым по около одного процента. Европейский стандарт EN 573-3 насчитывает их около 30 штук. Из этих тридцати сплавов наиболее широко применяются алюминиевые сплавы:

  • и
  • , а также
  • 6005А,
  • и
  • 6082.

Из этих пяти сплавов в мире изготавливается более 90 % всех прессованных алюминиевых профилей.

Рисунок 7 – Популярные алюминиевые сплав серии 6ххх

Зарубежные алюминиевые сплавы

В настоящее время общепризнанной является система обозначений алюминиевых сплавов, которая была введена  Американской Алюминиевой Ассоциацией (AA). Этой системы придерживаются и международные стандарты ISO, и европейские стандарты EN.

Каждый деформируемый сплав обозначается сочетанием четырех цифр, например, 2024. Первая цифра обозначает серию сплавов. Каждая из семи серий сплавов имеет один или два основных легирующих элементов. Например, в случае сплава 2024 из серии 2ххх – это медь.

Обозначения литейных сплавов также состоит из четырех цифр, однако между третьей и четвертой цифрами стоит точка, например,  380.0.

В России и других странах СНГ наряду с международной системой обозначений широко применяется и традиционная система буквенно-цифровая обозначений алюминиевых сплавов, например, АД31.

(Очень подробно и понятно об алюминиевых сплавах: Aluminum and Aluminum Alloys / ed. J.R. Davis – ASM International, 1993)

Поделитесь в социальных сетях:FacebookX
Напишите комментарий