Обработка титана на токарном станке

Сварка

Использование титана в качестве конструкционного металла предполагает соединение титановых элементов между собой и с деталями из других материалов. Зачастую для этого используется сварка. Первоначальные попытки сварить титан не увенчались успехом из-за его взаимодействия с воздухом и увеличения зерна при нагреве металла и прочими изменениями структуры, которые повышали хрупкость сварочного шва.

Сегодня данная процедура не вызывает подобных трудностей. Однако назвать ее простой нельзя, поскольку основная сложность заключается в том, чтобы защитить сварной шов от примесей. С этой целью процесс сварки титана сопровождается применением чистого инертного газа, бескислородных флюсов, а также защитных элементов типа козырьков и прокладок.

Добиться снижения роста зерна и свести все изменения в структуре титана к минимуму помогает метод сварки, который выполняется с высокой скоростью. Главное условие, которое должно соблюдаться при сваривании титана с различными металлами — обеспечение защиты нагретого металла от воздуха.

Защита сварного шва в контролируемой атмосфере актуальна лишь в том случае, когда гарантируется, что зона обработки не будет загрязнена. Если требуется сварить небольшие титановые элементы, то процесс осуществляется в специализированной камере, которая заполняется инертным газом. При этом процесс сварки специалист контролирует через стекло, предусмотренное конструкцией камеры.

Для сварки крупногабаритных деталей создаются все условия для обеспечения контролируемой атмосферы. В данной ситуации работы производятся в герметичном помещении высококвалифицированными специалистами, использующими индивидуальные средства жизнеобеспечения.

Титан: способы обработки

Производственные мощности компании “ТЕХКОМПЛЕКТ” позволяют обрабатывать заготовки диаметром до 1200 мм и длиной до 3 м, предусмотрена резка заготовок на ленточно-пильных станках диаметром до 350 мм. У нас большой опыт работы в данном направлении: мы хорошо знаем механические свойства титана, способы обработки от черновой до чистовой на токарных, токарно-карусельных и фрезерных станках, выполняем работы по обдирке титановых поковок и литьевых заготовок с «коркой». Производство укомплектовано всем необходимым для работы, а персонал компании досконально знает технологию.

Мы имеем опыт в обработке марок титановых сплавов: ВТ1-0, ВТ1-00, ВТ6, ВТ20, ВТ22, ВТ23, ОТ4, ОТ4-1, ОТ4-0, ВТ25, ВТ14, ВТ15, 2В, 3М, ВТ16, ВТ3-1, ВТ5, ВТ5-1, ПТ3В, СП3В, ПТ7М, ПТ1-М.

Значение нормо-часа — 1000 руб.

Трудности обработки титана


Титановый сплав

Титан — это легкий металл с серебристым оттенком. Помимо превосходной механической стойкости практически не подвержен ржавлению. Это связано с формированием пассивирующей оксидной пленки TiO2. Процесс разрушения происходит только в щелочных средах.

Перед обработкой титана следует ознакомиться с его свойствами. Главная проблема заключается в высоких прочностных характеристиках этого металла. До недавнего времени считалось, что невозможно выполнить эффективный процесс резания титана на обычном токарном станке. В большинстве случаев инструмент быстро изнашивался, а качество обработки оставляло желать лучшего.

Это напрямую связано со следующими факторами:

  • высокий показатель вязкости. В процессе резания происходит значительное повышение температуры в узкой области. В результате этого происходит налипание частиц металла на фрезу или сверло;
  • титановая пыль имеет свойство взрываться. Это же относится и к стружке. Поэтому во время обработки следует соблюдать все меры безопасности;
  • минимальная мощность оборудования. Для оптимизации процессов рекомендовано применять комплексные обрабатывающие станки. Они выполняют одновременно несколько операций, тем самым уменьшая вероятность появления вышеописанных факторов. Однако это влечет за собой удорожание оборудования.

Кроме этого, следует учитывать низкую теплопроводность материала. Практически все марки металлов и абразивов растворяются в титане. Поэтому следует выбрать специальный режущий инструмент, а также предварительно рассчитать режим его применения.

Соблюдение технологии обработки титановых сплавов

Для резания заготовок из титана применяются токарные станки с ЧПУ и специальный  режущий инструмент, а процесс делится на ряд операций, каждая из которых выполняется по особой технологии.

Операции обработки на  токарных станках  делятся:

  • предварительные;
  • промежуточные;
  • основные.

Необходимо также учитывать возникающую вибрацию при обработке заготовок из титановых сплавов,  появляющуюся при операциях на токарных станках. Частично эту проблему удается решить с помощью многоступенчатого крепежа заготовок  с расположением как можно ближе к шпинделю. Для уменьшения влияния температуры при обработке  лучшим вариантом является использование резцов из  мелкозернистых  твердых сплавов без покрытия и пластин со специальным покрытием PVD.

https://youtube.com/watch?v=NJnjYlQDvJA

При обработке заготовок  на  токарном станке учитываются три основных параметра:

  • угол фиксации инструмента (Kr);
  • размерность подачи (Fn);
  • скорость резания (Ve).

С помощью регулирования данных параметров производится изменение температурного режима резания. Для различных режимов, когда проводится обработка, устанавливаются и регулирующие параметры:

  • предварительного – до 10 мм производится снятие верхнего слоя с титановой заготовки с образованием припуска 1 мм (Kr -3 -10 мм, Fn – 0,3 — 0,8 мм, Ve — 25 м/мин);
  • промежуточного – 0,5 – 4 мм, удаляется верхний слой  с образованием ровной поверхности с припуском 1 мм (Kr – 0,5 – 4 мм, Fn – 0,2 – 0,5 мм, Ve —  40 — 80 м/мин).
  • основного – 0,2 – 0,5 мм, чистовая обработка с удалением припуска (Kr – 0,25 – 0,5 мм, Fn – 0,1 – 0,4 мм, Ve — 80 — 120 м/мин).

Обработка заготовок из титана ведется с обязательной подачей специальной эмульсии охлаждающей инструмент  под давлением для обеспечения нормального температурного режима. При использовании более глубокого реза необходимо снижать скорость обработки титана, меняя режимы работы.

Основные проблемы, возникающие при обработке титана, и средства их решения

Основной проблемой, возникающей при обработке титана, является его склонность к задиранию и налипанию на инструмент. Также одним из усложняющих факторов является его низкая теплопроводность. Большинство металлов сопротивляются плавлению в гораздо меньшей степени, поэтому при контакте с титаном растворяются в нем, образуя сплавы. Это приводит к быстрому износу применяемого инструмента.

Чтобы уменьшить задирание и налипание, а также для отвода выделяемого тепла, применяют следующие способы:

  • при резке, а также иной обработке титана используют охлаждающие жидкости;
  • заточку изделий выполняют с применением инструментов, изготовленных из твердых сплавов металлов;
  • обработку металла резцами выполняют при гораздо меньших скоростях, чтобы избежать излишнего нагрева.

Эффекты налипания и задирания титана обусловлены его высоким коэффициентом трения, который относят к серьёзным недостаткам этого металла. В своем большинстве изделия из титана быстро поддаются износу, поэтому чистый состав этого металла редко используются для изготовления изделий, которые применяются в условиях трения и скольжения. При трении титан налипает на трущуюся поверхность, вызывая связывающий эффект и уменьшая скорость движения сообщающихся деталей. Способами, которые устраняют этот негативный эффект, выступают азотирование и оксидирование титана.

Азотирование титана — технологический процесс, который заключается в нагреве изделия из титанового сплава до температуры 8500С — 9500С и его выдержке в течение нескольких суток в среде чистого газообразного азота. В результате происходящих химических реакций на поверхностях изделия образуется пленка из нитрида титана, имеющая золотистый оттенок и обладающая большей твердостью, а также большим сопротивлением к стиранию. Изделия, прошедшие такую обработку, обладают повышенной износостойкостью и не уступают по своим характеристикам изделиям, изготовленным из поверхностно упрочнённых специальных сталей.

Оксидирование титана — распространенный метод, заключающийся в нагреве титанового изделия до 8500С и его резком охлаждении в водной среде, что вызывает образование на поверхности обрабатываемой детали плотной пленки, которая хорошо связывается с основным слоем материала. При этом сопротивление стиранию и общая прочность изделия возрастает в 15-100 раз.

Обработка поверхности на коррозионную стойкость

Высокая коррозионная стойкость обусловлена образованием тонкой поверхностной плёнки оксида титана, толщина которой не превышает нескольких десятков ангстрем. Следовательно, коррозионную стойкость допустимо дополнительно улучшить.

Делается это за счёт нанесения дополнительного слоя оксидной плёнки, используя метод обработки поверхности атмосферным окислением. Кроме того, обработка окислением при атмосферном давлении значительно замедляет абсорбцию водорода.

Общая коррозионная стойкость и стойкость к щелевой коррозии дополнительно улучшается после покрытия поверхности металла плёнкой на основе химических соединений PdO-TiO2. Существует технология (Keni Coat) твёрдого электрического покрытия Ni-P для улучшения износостойкости, в результате применения которой:

  • твёрдость,
  • ударная вязкость,
  • смазывающая способность,
  • адгезионные свойства,

становятся сбалансированными до высокого уровня. Соответственно, обработанный таким методом титан демонстрирует улучшенные свойства износостойкости.

Формируя оксидную плёнку на поверхности металла с помощью анодирования, световая интерференция позволяет получать красивые цветовые тона с высокой насыщенностью в зависимости от толщины плёнки.

При помощи информации: Azom

Метки:индустриальныймеханическийобработкапайкасвойствахарактеристика

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ.

Трудности обработки титана

Принято считать, что титан поддаётся механической обработке подобно нержавеющим сталям. Это значит, что обрабатывать титан в 4-5 раз труднее, чем обычную сталь, но это всё же не составляет неразрешимой проблемы. Основные проблемы при обработки титана — это большая склонность его к налипанию и задиранию, низкая теплопроводность, а также то обстоятельство, что практически все металлы и огнеупорны растворяются в титане, в результате чего представляет собой сплав титана и твёрдого материала режущего инструмента. Такая обработка вызывает быстрый износ резца.

Для уменьшения налипания и задирания и для отвода большого количества тепла, которое выделяется при резании, применяют охлаждающие жидкости. Точение заготовки производят спомощью резцов из твёрдых сплавов причём скорость обработки, как правило, ниже, чем при точении нержавеющей стали.

Если необходимо разрезать листы из титана, то эту операцию осуществляют на гильотинных ножницах. Сортовой прокат больших диаметров режут механическими пилами, применяяножовочные полотна с крупным зубом. Менее толстые прутки разрезают на токарных станках.

При фрезеровании титан остаётся верным себе и налипает на зубья фрезы. Фрезы тоже изготовляют из твёрдых сплавов, а для охлаждения применяют смазки, отличающиеся большой вязкостью.

При сверлении титана основное внимание обращают на то, чтобы стружка не скапливалась в отводящих канавках, так как это быстро повреждает сверло. В качестве материала для сверления титана применяют быстрорежущую сталь. При использовании титана как конструкционного материала титановые детали соединяют друг с другом и с деталями из иных материалов разными методами

При использовании титана как конструкционного материала титановые детали соединяют друг с другом и с деталями из иных материалов разными методами.

Основной метод — сварка. Самые первые попытки сварить титанбыли неудачными, что объяснялось взаимодействием расплавленного металла с кислородом, азотом и водородом воздуха, ростом зерна при нагреве, изменениями в микроструктуре и другими факторами, приводимые к хрупкости шва. Однако все эти проблемы, ранее казавшиеся неразрешимыми, были решены в самые короткие сроки в наши дни сварка титана — обычная промышленная технология.

Но, хотя проблемы решены, сварка титана не стала простой и лёгкой. Основная её трудность и сложность заключается в необходимости постоянного и неукоснительного предохранения сварного шва от загрязнения примесями. Поэтому при сварке титана используют не только инертный газ высокой чистоты и специальные бескислородные флюсы, но и разнообразные защитные козырьки, прокладки, которые защищают остывающие.

Чтобы максимально снизить рост зерна и уменьшить изменения в микроструктуре, сварку ведут с большой скоростью. Почти все виды сварки производят в обычных условиях, применяя специальные меры для защиты нагретого металла от соприкосновение с воздухом.

Но мировая практика знает и сварку в контролируемой атмосфере. Такая защита сварного шва обычно необходима при выполнении особо ответственных работ, когда требуется стопроцентная гарантия того, что сварной шов не будет загрязнён. Если свариваемые части не велики, сварку ведут в специальной камере, заполненной инертным газом. Сварщик хорошо видит всё, что ему нужно через специальное окно.

Когда же сваривают большие детали и узлы, контролируемую атмосферу создают в специальных вместительных герметичных помещениях, где сварщики работают, применяя индивидуальные системы жизнеобеспечения. Разумеется, эти работы ведут сварщики самой высокой квалификации, но и обычную сварку титана должны проводить только специально обученные этому делу люди.

В тех случаях, когда сварка не возможна или попросту не целесообразна, прибегают к пайке. Пайка титана осложняется тем, что он при высоких температурах химически активен и очень прочно связан с покрывающей его поверхность — окисной плёнкой. Подавляющее большинство металлов непригодно для использования в качестве припоев при пайке титана, так как получаются хрупкие соединения. Только чистые серебро и алюминий подходят для этой цели.

Цель анодирования титана

В процессе анодирования изделие из титана покрывается оксидной пленкой, которая образуется из самого металла в результате электрохимической реакции.

Анодирование изделий из титана также называют анодным оксидированием. Если сравнивать анодирование в условиях промышленного производства с применением специального оборудования и самостоятельное покрытие оксидной пленкой, то, конечно, второй способ несколько уступает качеством результата. Но тем не менее металл, обработанный в домашних условиях, приобретает ряд неоспоримых преимуществ:

  1. Оксидная пленка выполняет защитные функции, не позволяя влаге проникнуть к металлической основе изделия. Барьер предотвращает образование коррозии, что продлевает сроки эксплуатации предметов быта из титанового сплава.
  2. Анодирование титана укрепляет поверхность изделия и делает его более устойчивым к различным видам внешних повреждений.
  3. Металлические изделия после анодного оксидирования частично или полностью теряют способность проводить электрический ток.
  4. Посуда с оксидным покрытием выдерживает длительный нагрев, обладает антипригарными свойствами и не выделяет токсичных веществ во время приготовлении пищи.
  5. Если изделие из титана прошло оксидную обработку, это не является препятствием к другим видам обработки посредством гальванизации.
  6. Регуляция силы тока и составляющих электролитической жидкости позволяют сделать оксидное покрытие не только более прочным, но и красивым. Применение красителей позволит придать изделию привлекательный внешний вид.

Анодирование титана в условиях производства позволяет провести более глубокую обработку деталей, однако даже в домашних условиях можно добиться повышения износостойкости металлических изделий.

Совет №2: Титан изолирует

Тепло от титана быстро не рассеивается. На самом деле, по сравнению с большинством других металлов, титан является скорее теплоизолятором, чем проводником.

Что это означает для токарной обработки?

Стружка не отводит тепло, как это происходит со сталью или алюминием.

На самом деле, если вы дадите агрессивную нагрузку, ваш резец быстро сгорит. Ваш инструмент — это то, что примет на себя большую часть тепла от резки. Ключ к успешному точению титана заключается в том, чтобы максимально снизить нагрев.

Вот как это проявляется при обработке титана:

  • Используйте резцы, предназначенные для титана, которые обычно намного острее, чем те, которые вы бы использовали для стали. Такие резцы лучше режут и не выделяют столько тепла. Фрезы с отрицательным углом наклона или с закругленными режущими кромками не подходят для обработки титана;
  • Используйте прореживание стружки. Если это вообще возможно, используйте вставки которые уменьшают размер стружки. Круглые вставки могут хорошо работать, как и при использовании 110-градусного угла вставки CNMG вместо 80-градусной стороны, когда это возможно;
  • Хорошая подача охлаждающей жидкости имеет решающее значение! Тепло будет попадать в резак, и только охлаждающая жидкость предотвратит преждевременное выгорание твердого сплава. Мало того, что охлаждающая жидкость должна быть сильно направлена ​​в разрез, вам, вероятно, также понадобится более концентрированная смесь, чтобы получить необходимую смазывающую способность. Это подходящее время для того, чтобы поговорить с вашим торговым представителем охлаждающей жидкости, чтобы узнать, что они рекомендуют;
  • Не нажимайте на обороты. Обычный SFPM для титана обычно составляет около 150 или около того, и вы можете получить немного больше для чистовой обработки, если ваш сплав позволяет это. Иногда даже изменение скорости вращения на 10% может привести к катастрофическому отказу фрезы, которая прослужила бы целый час. Титан неумолим;
  • Нагрузка стружки важна, но не так важна, как число оборотов. Вы просто не сможете оттолкнуть 6- и 9-гранники толщиной .040″, как это можно сделать со сталью, но вы можете сделать это лучше, чем многие думают. Одно исследование показало, что изменение нагрузки на стружку от .002″ до .020″ привело к изменению температуры реза на 300 градусов по Фаренгейту. Если вы пытаетесь достичь максимальной производительности, увеличивайте подачу, а не скорость.

Фрезерование с натягом.

«Фрезерование с подъемом» — это знакомый всем термин. То есть не подавайте фрезу так, чтобы кромка двигалась через материал в том же направлении, что и инструмент. Этот подход к обработке, известный как «обычное фрезерование», приводит к тому, что стружка вначале становится тонкой, затем толще. Когда инструмент сталкивается с материалом, силы трения создают тепло перед тем, как материал начинает отрываться от основного металла. Тонкая стружка не может поглотить и отвести выделяемое тепло, которое вместо этого попадает в режущий инструмент. Затем на выходе из толстой стружки повышенное давление резания создает опасность прилипания стружки. 

Фрезерование с натягом — или формирование стружки от толстой к тонкой — начинается с того, что режущая кромка входит в излишки материала и выходит на обработанную поверхность. При боковом фрезеровании инструмент пытается «перелезть» через материал, создавая толстую стружку на входе для максимального поглощения тепла и тонкую стружку на выходе для предотвращения прилипания стружки. 

Обработка титана. Фрезерование с натягом

Фрезерование контурной поверхности требует тщательного изучения траектории движения инструмента, чтобы гарантировать, что инструмент продолжает входить в излишки материала и таким образом выходить на обработанную поверхность. Достичь этого во время сложных проходов не всегда так уж и просто.

Разработка и режимы сварки

Для формирования долговременного, надежного шва нужно особым образом приготовить свариваемые поверхности. Для начала следует снять оксидную пленку – для этого заготовку следует кропотливо очистить от загрязнений и обезжирить с обеих сторон на удалении не наименее 20 см от полосы грядущего шва. Делать эти манипуляции необходимо в защитных перчатках и кузнечном фартуке, в неприятном случае потожировые пятна попадут с рук и одежки на свариваемые поверхности, и это усугубит свойство работ.

Раствор прогревают до 60 градусов и обрабатывают поверхности около 10-15 минут.

Опосля этого приходит очередь механической обработки, которая сводится к шлифовке поверхности наждаком No12 и металлизированными щетками, это помогает вполне удалить все трещинкы.

Аналогичным образом обрабатывают сварочный пруток — только опосля этого можно перебегать конкретно к привариванию титановых сплавов.

В процессе проведения сварочных работ обычно выдерживается неизменная скорость движения электронов, тем достигается непрерывность подачи присадки. На этом шаге необходимо задать таковой режим работы, при котором скорость электрода составляет приблизительно 2-2,5 мм в секунду. Весьма принципиально придерживаться точности движений, свести к минимуму уводы электродов в сторону и их колебания — в процессе работы электрод должен дотрагиваться к шву по направлению снизу ввысь так, чтоб сварка производилась «вперед углом» исключались поддувы.

В процессе сварочного процесса, также приблизительно в течение 50-60 секунд опосля выключения горелки необходимо продолжать подачу защитного газа на шов до того времени, пока температура нагрева шва не опустится до отметки ниже 400 гр.

Чтоб варить титановые трубы, будет нужно герметизация их концов, для этого употребляется инертный газ, обычно аргон или гелий, его закачивают вовнутрь через особый насос.

При отсутствии спец сварочного аппарата в домашних условиях приварить трубы из этого сплава не представляется вероятным. Единственно доступной технологией является стыковая конденсаторная сварка заготовок из сплава марки BT1-ВТ2, поперечник поперечного сечения которой не превосходит 20-23 мм с шириной стен не больше 1,5 мм. Такие элементы можно приваривать друг к другу только в огнезащитной газовой среде и лишь конденсаторным способом при завышенном заряде, напряжение которого установлено на отметке 850- 2100 B.

Борьба с вибрацией и повышением температуры

Первостепенное значение при обработке титана приобретает снижение уровня вибрации – главной причины быстрого износа оборудования. Помимо описанных выше специфических особенностей материала как материала, существуют дополнительные причины возникновения вибрации:

  • Сложная конфигурация деталей из титана и сплавов, затрудняющая надежное крепление заготовки в станке;
  • Необходимость создания пазов и выемок, в процессе вырезания которых детали сообщается дополнительная вибрация.

Специалисты рекомендуют максимально повысить надежность фиксации детали в станке. Одним из лучших способов на данный момент считается многоступенчатое крепление, позволяющее надежно зафиксировать даже заготовку сложной криволинейной формы. При многоступенчатом креплении деталь также располагается на минимальном расстоянии от шпинделя, что дополнительно снижает вибрацию.

Риск деформации режущего инструмента и образования дефектов на поверхности детали усиливается из-за высоких температур, возникающих в процессе работы

Из-за повышенной твердости титана в точке обработки выделяется значительное количество тепла, поэтому подбору подходящего материала режущей кромки необходимо уделить пристальное внимание. На данный момент наиболее удачным выбором являются твердые мелкозернистые сплавы и режущие инструменты с покрытием PVD

Токарная обработка титана

Ввиду малых скоростей при обработке титана наблюдается высокое трение инструмента, что вызывает большое выделение тепла. Так при выборе малых радиусов при вершине режущей пластины этот радиус просто «сгорает», поэтому выбираем радиусы побольше. Контролировать температуру в зоне резания можно скоростью, толщиной стружки и глубиной резания.

Обязательно применение СОЖ, и желательно под высоким давлением. Необходимо точно направить подачу СОЖ в зону резания. Используя СОЖ под давлением (80 бар) можно повысить скорость резания на 20%, стойкость инструмента на 50%, а также улучшить стружкодробление.

Для обработки титановых сплавов не используйте инструменты на основе керамики.

Выбор инструмента для наружной токарной обработки

Предварительная обработка:

— Квадратные пластины с большим радиусом вершины, возможно назначить большую глубину резания.

— Круглые пластины больших размеров.

— Использовать стружколомы для тяжелой обработки, стружколомы снижающие силу резания, стружколомы с улучшенным контролем стружкообразования.

— Используйте твердые сплавы без покрытия.

— Круглые пластины (имеется возможность назначить высокие скорости резания, высокую подачу, присутствует меньший износ, небольшая глубина резания.)

— Использовать сплавы без покрытия, или как вариант PVD-покрытие для обеспечения сочетания прочность-износостойкость.

— Снижать подачу при увеличении глубины.

— Выбирать радиус пластины меньше, чем радиус скругления на детали, так не придется занижать радиус.

— На криволинейных участках снижайте подачу на 50%.

— Трохоидальное точение – первый выбор.

— Если невозможно трохоидальное точение используйте врезание под углом.

— Выбирайте пластины с шлифованными режущими кромками, они повышают стойкость и снижают силы резания.

— Предпочтение имеет острая геометрия, но также учитывайте требование стабильности при выборе геометрии и формы пластины.

— Для тонкостенных деталей выбирайте главный угол в плане Kr=45 градусов и радиус при вершине не более 3хap, острую геометрию с небольшим радиусом округления режущей кромки. Используйте относительно низкую подачу 0,15 мм/об.

— Для жестких деталей выбирайте большой радиус при вершине и большой радиус округления режущей кромки.

— Выбирайте сплав без покрытия, или с PVD-покрытием и острой кромкой для снижения сил резания и повышения скорости резания, или поликристаллический алмаз (PCD) для обеспечения высокой стойкости и скорости резания. По сравнению с твердым сплавом без покрытия PCD может увеличить скорость в 2 раза

Рекомендации при использовании круглых пластин

1. Используйте рекомендацию назначения ap, как на рисунке ниже.

Режимы токарной обработки титана

Для обработки титана характерны малые скорости резания при большой подаче и глубине резания, интенсивное охлаждение.

Предварительная обработка (тяжелая черновая обработка, удаление корки и т.д.): ap=3-10 мм, fn=0.3-0.8 мм, Vc=25 м/мин.

Промежуточная обработка (черновая, получистовая обработка без корки, профильная обработка и т.д.): ap=0.5-4 мм, fn=0.2-0.5 мм, Vc=40-80 м/мин.

Окончательная обработка (получистовая, чистовая обработка, финишная обработка и т.д.): ap=0,25-0,5 мм, fn=0.1-0.4 мм, Vc=80-120 м/мин.

Выбор инструмента для внутреннего растачивания

Предварительная обработка: — Главный угол в плане 90 град, но не менее 75 град. Это снизит отжатие оправки и вибрации. — Используйте твердый сплав без покрытия. — Используйте максимально возможный диаметр оправки и минимальный вылет.

Промежуточная обработка: — Главный угол в плане 93 град, угол при вершине 55 град. — Стружколом обеспечивающий низкие силы резания. — Твердый сплав без покрытия. — Максимально возможный диаметр оправки, минимальный вылет — При необходимости антивибрационный инструмент.

Окончательная обработка: — Позитивные пластины с задним углом и острая геометрия для снижения сил резания и меньшего отжатия инструмента. — Шлифованная пластина, угол при вершине 55 град, главный угол в плане 93 град — Твердый сплав без покрытия. — Максимально возможный диаметр оправки, минимальный вылет — При необходимости антивибрационный инструмент.

Далее мы рассмотрим фрезерование титана, выделим основные приемы для преодоления всех сложностей обработки титана уже на фрезерных станках.

Когда речь заходит о улучшении характеристик обработки титана, то необходимо контролировать температуру, силу шпиндельных соединений и необходимость максимизировать динамическую жесткость системы СПИД.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий