Технологии сварки
Для минимизации возникновения дефектов в дальнейшем процессе эксплуатации хромоникелевых сталей необходимо правильно подобрать оптимальный способ сваривания аустенитной стали.
Основные способы сварки аустенитной стали:
- ручная дуговая;
- электрошлаковая;
- в атмосфере защитных газов.
Ручная дуговая сварка
Ручная дуговая сварка представляет собой достаточно маневренный способ. Это сваривание происходит таким образом, чтобы химический состав оставался неизменным при разных пространственных положениях и возможных позициях соединений.
Оптимальные рекомендации для ручной дуговой сварки:
- ниточные швы с помощью электродов сечением 3 миллиметра;
- 60-90 минут прокаливать сварочные электроды при температуре от 250 оС до 400 оС (выполнить это необходимо перед началом сварки). Это препятствует возникновению пор в соединительном шве.
Подходящие электроды используют на постоянном токе и обязательно с обратной полярностью. На максимальном токе сварка выполняется в положении снизу. А если работа необходима в вертикальном или потолочном расположении, нужно брать силу тока на 10-30% меньше.
Электрошлаковая сварка
Технология выполнения работы электрошлаковой сваркой сама по себе минимизирует возможность образования горячих трещин.
Преимущества данной техники сварки:
- Отсутствие существенных деформаций в угловой и стыковой областях.
- Неспешная скорость движения нагревательного оборудования.
- Мягкая кристаллизация сварочной ванны.
Схема электрошлаковой сварки
Для данного типа сварки используют электроды в форме пластин с толщиной от 6 до 20 мм или проволоку с толщиной 3 мм.
Сварка в атмосфере защитных газов
Сварка в атмосфере защитных газов позволяет выполнять работы на изделиях разнообразной толщины. В этой технологии положительно работают активные и инертные газы. Сварщик за счет разнообразия защитных газов самостоятельно выбирает условия ввода в металл необходимого количества тепла и может менять эффективность электродуги.
Для этого типа работы характерно использование вольфрамовых или плавящихся электродов. Они отлично подходят для изделий в 5-7 мм.
Сварка выполняется импульсной или горящей дугой. Оптимальнее использование первого вида, т. к. при импульсной работе снижается искажение конфигурации кромок, а также уменьшается длина околошовной зоны.
Вольфрамовые электроды можно использовать как с присадочным материалом, так и без него. Это зависит от толщины соединяемого места и конструкции детали.
Для активных газов и смеси из газов применяются плавящиеся электроды. Стержни такого типа способствуют высокому качеству работы при использовании их в импульсно-дуговой сварке. Данная техника выполняется в смеси кислорода, углекислого газа и аргона, а также в чистом виде аргона.
Как увидеть аустенит?
Как известно, аустенит является твердым раствором углерода в -железе и расположен на диаграмме состояния железо-углерод (рис.1,а) выше 727С (температура перлитного превращения). Поэтому при комнатной температуре увидеть настоящий аустенит невозможно. Можно увидеть аустенит в высокотемпературном микроскопе при нагреве.
При комнатной температуре мы обычно можем увидеть аустенит в легированной стали. В этих сталях много легирующих элементов (кроме углерода), поэтому аустенит в них существует при комнатной температуре. Это, например, нержавеющая сталь (рис.1,б).
а | б |
Рисунок 1. Фрагмент диаграммы состояния железо-углерод (а) и структура аустенита (б) (съемка через зеленый фильтр.).
Можно наблюдать остаточный аустенит после закалки, если в стали содержится больше 0,6% углерода. Как он формируется? Известно, что мартенситное превращение при закалке происходит с увеличением объема, т.е. мартенсит занимает больший объем, чем исходный аустенит. Поэтому, чем дальше идет мартенситное превращение, тем больше сжимается тот аустенит, который еще не превратился в мартенсит. Известно, что аустенит стабилизируется пластической деформацией, т.е. чем больше его сжать, тем хуже он будет превращаться в мартенсит. В какой-то момент превращение вообще остановится, а аустенит останется в стали в «зажатом» виде. Это будут отдельные включения, расположенные случайно. На рис.2 аустенит виден в виде белых включений на фоне мартенсита.
Рисунок 2. Остаточный аустенит в стали после закалки.
Можно ли создать в обычной стали структуру с большим количеством остаточного аустенита? Вероятно, если сжать определенный участок металла при закалке «целенаправленно», то можно создать большую зону с остаточным аустенитом. Такое возможно в процессе плазменной резки, когда поток плазмы расплавляет металл в зоне реза (рис.3).
Рисунок 3. Процесс плазменной резки. (http://novator-grp.ru/rus/projects/Hypertherm/ ; Дата доступа – 25.04.2014)
В процессе резки поверхность реза нагревается. Можно представить себе, как распределится температура в зависимости от расстояния до линии реза (рис.4). Поверхность реза нагревается до температуры, достаточной для поверхностной закалки. Это зона 1. Зона 2 нагреется, очевидно, до температуры выше, чем 727С. Охлаждаться она будет не так быстро, как зона 1. В этой зоне закалки не произойдет, но структура изменится Зона 3 останется без существенных изменений, так как нагреется до температуры ниже 727С.
Рисунок 4. Схема расположения структурных зон при плазменной резке.
Действительно, на поверхности шлифа (после травления реактивом 4% азотной кислоты в этиловом спирте) выявляется слой изменившейся структуры (рис.5).
Рисунок 5. Структура стали вблизи линии плазменного реза.
На поверхности имеется зона (1) толщиной порядка 50-100 мкм. Это зона закалки со структурой мартенсита. После нее следует зона с двухфазной структурой (2). Толщина зоны составляет порядка 250 мкм. В данной зоне однозначно присутствует феррит (α-Fe), который является матрицей материала (был до обработки плазмой). И есть еще светлые, достаточно крупные, участки структуры с четкими границами. Итак, что может быть белым в структуре стали при травлении традиционным реактивом? Аустенит, феррит, цементит. Как их разделить? Можно измерить твердость.В зоне 1 твердость колеблется в пределах 3000-3500 ГПа. Такую твердость имеет троостит или мартенсит отпуска. Микротвердость во второй зоне составляет 2254 ГПа, что соответствует ферриту. Известно, что твердость аустенита в 2-2,5 раза выше, чем феррита, твердость цементита превышает твердость феррита приблизительно в 10 раз. Поэтому светлой фазой может быть только аустенит.Рентгеноструктурный анализ это подтвердил. Обнаружено Feγ – остаточный аустенит.Главное! Поскольку процесс изменения структуры начался с поверхности, где шла закалка, формирующийся мартенсит сдавил зону 2 и не дал аустениту превратиться до конца. Превращение «застряло» в области GPS диаграммы состояния железо-углерод на этапе превращения аустенита в феррит.На рис. 6 показана зона 2 при большом увеличении. Светлая фаза – аустенит, более темная – феррит.
Рисунок 6. Структура стали в зоне 2.
Марки аустенитной стали
Регламент изготовления аустенита определен в ГОСТ 5632-2014. В нем указываются следующие марки сталей аустенитного класса:
Феррит (твердый раствор внедрения C в α-железе с объемно-центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ-железе с гранецентрированной кубической решеткой) Цементит (карбид железа; Fe3C метастабильная высокоуглеродистая фаза) Графит стабильная высокоуглеродистая фаза
Ледебурит (эвтектическая смесь кристаллов цементита и аустенита, превращающегося при охлаждении в перлит) Мартенсит (сильно пересыщенный твердый раствор углерода в α-железе с объемно-центрированной терагональной решеткой) Перлит (эвтектоидная смесь, состоящая из тонких чередующихся пластинок феррита и цементита) Сорбит (дисперсный перлит) Троостит (высокодисперсный перлит) Бейнит (устар: игольчатый троостит) — ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа
Белый чугун (хрупкий, содержит ледебурит и не содержит графит) Серый чугун (графит в форме пластин) Ковкий чугун (графит в хлопьях) Высокопрочный чугун (графит в форме сфероидов) Половинчатый чугун (содержит и графит, и ледебурит)
Аустенит (γ-фаза) — высокотемпературная гранецентрированная модификация железа и его сплавов.
В углеродистых сталях аустенит — это твёрдый раствор внедрения, в котором атомы углерода входят внутрь элементарной ячейки γ-железа во время конечной термообработки. В сталях, содержащих другие металлы (кроме железа, легированные стали), атомы металлов замещают атомы железа в кристаллической решетке и возникает твердый раствор замещения. В чистом железе существует в интервале температур 910—1401 °C; в углеродистых сталях аустенит существует при температурах не ниже 723 °C (1333 °F). Фаза названа в честь сэра Уильяма Чандлера Робертс-Остина (англ. William Chandler Roberts-Austen , 1843—1902). В легированных сталях аустенит может существовать и при гораздо более низких температурах. Такие элементы, как никель стабилизируют аустенитную фазу. Нержавеющие стали, такие как 08Х18Н10Т или AISI 304, AISI 316 и т.д. относятся к аустенитному классу. Присутствие никеля в количестве 8—10% приводит к тому, что аустенитная фаза сохраняется и при комнатной температуре. Мартенситно-стареющие нержавеющие стали типа 08Х15Н2ДТ или Ph 17-4 могут содержать некоторое количество остаточного аустенита. Оптическая металлография во многих случаях не позволяет выявить присутствие аустенита, расположенного, как правило, по границам мартенситных пакетов. Основными способами определения количества остаточного аустенита являются рентгеноструктурный анализ и просвечивающая электронная микроскопия.
Реферат на тему джордано бруно
Конституционно правовые нормы и институты реферат
Титульный лист реферата мгимо
Методика работы со школьниками старшего возраста реферат
- Падающая башня кэпитал гейт реферат
Фазы в системе «железо-углерод»
В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.
Жидкая фаза
Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.
Феррит
Феррит (Ф, α)- твердый раствор внедрения углерода в α-железе (от латинского слова ferrum – железо). Различают низкотемпературный феррит с предельной растворимостью углерода 0,02 % при температуре 727° С (точка P) и высокотемпературный δ-феррит (в интервале температур 1392…1539° С) с предельной растворимостью углерода 0,1 % при температуре 1499° С (точка J).
Свойства феррита близки к свойствам железа. Он мягок (твердость – 80 — 130 НВ, временное сопротивление – σв=300 МПа) и пластичен (относительное удлинение — δ=50 %), магнитен до 768° С.
Под микроскопом феррит выглядит как светлые полиэдрические зерна. В сталях может существовать в виде сетки (разной толщины, в зависимости от содержания углерода), зерен (малоуглеродистые стали), пластин или игл (видманштетт).
Аустенит в сталях
Аустенит (А, γ) – твердый раствор внедрения углерода в γ–железо (по имени английского ученого Р. Аустена). Углерод занимает место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в γ -железе 2,14 % при температуре 1147° С (точка Е). Аустенит имеет твердость 180 НВ, пластичен (относительное удлинение – δ=40…50 %), парамагнитен. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования. Под микроскопом выглядит как светлые полиэдрические зерна с двойниками.
Цементит – формы существования
В железоуглеродистых сплавах присутствуют фазы: цементит первичный, цементит вторичный, цементит третичный. Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.
Поскольку углерод в сплавах с железом встречается в виде цементита и графита, существуют две диаграммы состояния, описывающие условия равновесия фаз в системах железо — цементит и железо — графит. Первая диаграмма (Fе — Fе3С) называется цементитной (метастабильная), вторая (Fе — С) — графитной (стабильная). Оба варианта диаграммы приводятся вместе в одной системе координат: температура — содержание углерода. Диаграмма состояния системы железо — углерод построена по результатам многочисленных исследований, проведенных учеными ряда стран. Особое место среди них занимают работы Д.К. Чернова
Он открыл существование критических точек в стали, определил их зависимость от содержания углерода, заложил основы для построения диаграммы состояния железоуглеродистых сплавов в ее нижней, наиболее важной части
Буквенное обозначение узловых точек в диаграмме является общепринятым как в России, так и за рубежом.
Диаграмма состояния железо-углерод
Имеющиеся во всех областях диаграммы фазы видны на рисунке. Значение всех линий указано в таблице.
Ликвидус по всей диаграмме проходит по линиям АВ, ВС, СD; солидус — по линиям АН, НJ, JЕ, ЕСF. Сплавы железа с углеродом обычно делят на стали и чугуны. Условной границей для такого деления является 2,14 % С (точка E). Сплавы, содержащие углерода менее 2,14 %, относятся к сталям, более 2,14 % — к чугунам.
Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения. Обозначаются буквой А. В зависимости от того, при нагреве или при охлаждении определяется критическая точка, к букве А добавляется индекс с (от слова chauffage – нагрев) при нагреве и индекс r (от слова refroidissement – охлаждение) при охлаждении с оставлением цифры, характеризующей данное превращение.
Таким образом, например, нагрев доэвтектоидной стали выше соответствующей точки на линии GS обозначается как нагрев выше точки АС3. При охлаждении же этой стали первое превращение должно быть обозначено как Аr3, второе (на линии РSК) — как Аr1.
Применение сплавов
Стали аустенитного класса используются при изготовлении устройств, работающих при высоких температурах, начиная от 200 °C: парогенераторов, роторов, турбин и сварочных механизмов. Недостатком использования аустенита в этих механизмах является низкая прочность металла. При длительном контакте железных сплавов различными гидроокисями могут образоваться дополнительные трещины, что приведет к поломке рабочих поверхностей устройств. Устранить этот недостаток можно при добавлении в раствор железа дополнительных химических элементов: ванадия и ниобия. Они формируют карбидную фазу, увеличивающих показатели прочности стали.
Нержавеющие аустенитные стали используются в механизмах, функционирующих в сложных условиях и при сильных перепадах температурных показателей. Чаще всего они используются при сварке коррозионностойких труб. Во время этого процесса между крепежными элементами образуется шовное пространство. При нагревании нержавеющих труб из аустенита до температуры плавления они приобретают монолитную структуру, защищающей металл от процессов окисления и высоких перепадов температур.
Также аустенитные стали обладают высокой устойчивостью к электромагнитным излучениям. Поэтому ее применяют при производстве отдельных деталей для радиоэлектронного оборудования. Аустенит улучшает прочность механизмов радио и не теряет свои свойства при изменениях структуры магнитного поля. По этой причине радиотехническая аппаратура будет легко принимать необходимые сигналы.
Аустенитные сплавы железа нашли широкое применение в производстве механизмов, работающих в водной среде. Нержавеющая сталь устойчива к образованию коррозии. Она используется в качестве защитного материала. При правильном соотношении хрома и никеля аустенит может сформировать тонкий слой, снижающим влияния водной среды на рабочую поверхность металлического приспособления. В результате снижается износ устройства. Но при значительном вымывании никеля материал полностью теряет устойчивость к коррозии.
В современных корпусах турбин также используются аустенитные стали с большим пределом текучести. Они позволяют избежать коробления данного устройства и улучшить показатели его прочности. Благодаря наличию крупнозернистой структуры, при помощи аустенита с высоким пределом текучести также можно укрепить конструкцию ротора турбины. Недостатком этой технологии является значительное повышение стоимости механизмов из-за использования большого количества дорогой аустенитной стали.
Химический состав в % стали 08Х18Н10Т
C | Si | Mn | P | S | Cr | Mo | Ni | V | Ti | Cu | W | Fe |
<0,08 | <0,8 | <2,0 | <0,035 | <0,02 | 17,0-19,0 | <0,3 | 9,0-11,0 | <0,2 | <0,7 | <0,4 | <0,2 | Остальное |
Химический состав, это основное, от чего зависят характеристики стали 08Х18Н10Т.
Основной элемент в сплаве – углерод, его содержание в данной стали – 0,08 %. Чтобы повысить эксплуатационные свойства, в сплав вводят хром – от 17 до 19 %. Процентное содержание никеля – 9–11 %. В составе сплава данной стали есть кремний, марганец и молибден в небольшой концентрации – до 0,9%. Титан в количестве 0,7% значительно меняет свойства стали 08Х18Н10Т.
Влияние химсостава на свойства стали
Все свойства стали 08Х18Н10Т
, зависят от введения в сплав достаточно большого процента хрома и никеля. При этом необходимо учитывать, что большая концентрация хрома значительно повышает коррозионную стойкость. А большой процент никеля отражается негативно на эксплуатационных характеристиках. Углерод, являющийся основным элементом, при низком содержании может ухудшить показатели твердости и прочности, но повысить свариваемость.
ГОСТы
Изготовление аустенита регулируется с помощью законодательным норм, правил, законов. Основные нормы перечислены в следующих нормативных документах — ГОСТ 5632-2014, ГОСТ 11878-66, ГОСТ Р ИСО 4136-2009.
Эти документы определяют все основные моменты, которые касаются аустенитных сталей — изготовление, маркировка, категории, марки, особенности транспортировки и так далее.
В соответствии с нормами ГОСТ для определения содержания ферритных (железных) компонентов в каких-либо изделиях на основе аустенита может применяться металлография либо магнитная технология. Для проведения проверки из аустенита вырезаются небольшие прутки (не менее 2 штук).
Алгоритм проверок
- Определение содержания железа методом металлографии. На прутках делаются небольшие шлифы, которые подвергаются электролизу или химическому травлению. После этого шлифы помещаются под мощный микроскоп, где визуально определяются содержание железистых соединений. По результатам исследований выставляется оценка, которая определяет концентрацию железа в основном сплаве. Чтобы увеличить точность исследований, рекомендуется взять несколько независимых проб с нескольких прутков.
- Определение содержания железа магнитным методом. На прутках делаются микрошлифы, которые проходят шлифовку, зачистку с помощью абразивных материалов. После этого проводится серия замеров с помощью ферритометров, обладающих высоким порогом чувствительности. Минимальное количество замеров — 40 штук. В конце полученные сведения обрабатываются с помощью методов математической статистики и моделирования. Для увеличения точности исследования рекомендуется взять несколько независимых проб.
Обзор видов и марки
А теперь подробнее о том, что приобретает аустенитная сталь, и почему эти ее свойства так важны.
Жаропрочные
Жаропрочностью называют свойство стали не изменять присущих ей технических характеристик, когда температуры становятся критическими со временем. Разрушается металл, когда исчерпывается его потенциал способности противостояния дислокационной ползучести – это значит, на молекулярном уровне смещение атомов. Плавно приходит разупрочнение (то есть процесс, обратный упрочнению), и старение стали идет высокими темпами. Это может быть и при низких, и при предельных температурах. Как долго будет происходить этот процесс, в каком временном промежутке он растянется, вот так и определяется способность стали к жаропрочности.
Стоит также объяснить понятие ползучести. Ее характеристикой считается предел ползучести, являющийся характеристикой условного растягивающего напряжения. При этом напряжении скорость и деформация ползучести за какое-то время достигнут заданного показателя. Если есть допуск по скорости этого маркера, предел ползучести будет обозначаться сигмой с двумя индексами – нижний будет обозначать заданную скорость ползучести, верхний – актуальную температуру. А вот если задано уже относительное удлинение, в обозначении предела ползучести будет уже три индекса – верхний температурный, два нижних соответствуют деформации и времени.
В тех деталях, которые должны работать долгое время, то есть годы, предел ползучести должен быть связан с малыми деформационными изменениями, что возникают при достаточной длительности приложенной нагрузки. Жаропрочные свойства связаны в первую очередь с температурой плавления, а уже потом с легированием, с режимами той термообработки, которая была ранее. В жаропрочных сталях (и аустенитная не исключение) самым часто встречаемым легирующим компонентом считается хром. К слову, влияет он не только на жаропрочность, но и на жаростойкость.
Нержавеющие
Иначе говоря, коррозионностойкая сталь – это тот металл, который способен противостоять разрушению не только на длительный период, не только при высоких и критически низких температурах, но и в агрессивных средах тоже. Это значит, что металл не будет разрушаться даже в тех составах, которые активно вступают в реакцию с компонентными элементами.
Коррозия бывает двух типов.
- Химическая. То есть металл окисляется в газовой, воздушной и водной средах.
- Электрохимическая. Металл растворяется в кислотах с положительно или отрицательно заряженными ионами. Когда есть разность потенциалов электролита и металла, случается поляризация (избежать ее невозможно), и она приводит к некоторому взаимодействию между веществами.
Если температурные условия нормальны, сталь-аустенит не вступит в контакт с азотом, с атмосферным кислородом и углекислым газом, с водой. А значит, образование разрушительных осадков сведено к минимуму. Потому и делают из аустенитной стали детали, эксплуатируемые на морских объектах – турбины, мосты и многое другое. Есть даже отдельный вид стали, антикоррозийный аустенитный. Это будут сплавы, в которых удельное содержание никеля и хрома велико. В меньших количествах там могут быть молибден и марганец, кремний. Для сплавов этой группы главная особенность заключается именно в минимальном риске коррозии, вне зависимости от температурного контекста.
Как можно достичь такой высокой устойчивости: первый фактор – много хрома в составе, а ведь именно он формирует на поверхности защитную пленку. Второй фактор – низкий процент углерода, меньше 0,3%. И в комбинации оба фактора ведут к отсутствию вступления в контакт материала и кислорода, воды, азота.
Хладостойкие
Холодостойкостью называется свойство сохранения структуры в условиях криогенных температур на протяжении длительного времени. Так как кристаллическая решетка стали искажена, а потому она имеет способность принимать строение, которое сравнимо со стандартными малолегированными сталями. Только уже при низких температурах. Но есть у них один существенный минус – полноценные свойства они обретают лишь при отрицательных температурных показателях.
В класс хладостойких входят металлы, в которых велико удельное содержание хрома, а никель содержится в средних количествах. А в роли других легирующих добавок активно используют, например, вольфрам или марганец. Хладостойким сплавам несложно выдерживать очень низкие температуры, да и термоскачки они переносят отлично. Но если температура комнатная нормальная, физсвойства такой стали можно назвать посредственными – прочность не будет высокой, химическая инертность довольно слабая.
Разница между Аустенитной и Мартенситной нержавеющей сталью
Ключевое различие между Аустенитной и Мартенситной нержавеющей сталью заключается в том, что кристаллическая структура Аустенитной нержавеющей стали представляет собой гранецентрированную кубическую структуру, тогда как кристаллическая структура Мартенситной нержавеющей стали представляет собой объемно-центрированную кубическую структуру.
Существует четыре основных группы нержавеющей стали в зависимости от кристаллической структуры стали: аустенитная, ферритная, мартенситная и двухфазная. М икроструктура этих сплавов зависит от присутствующих в них легирующих элементов. Т аким образом, эти сплавы также имеют различные легирующие элементы.
Что такое Аустенитная нержавеющая сталь?
Аустенитная нержавеющая сталь — это тип нержавеющей стали, имеющий аустенит в качестве своей первичной кристаллической структуры. Данная кристаллическая структура аустенита является гранецентрированной кубической, в которой есть один атом в каждом углу куба, и есть один атом в каждой грани (в центре грани) . Получается такая структура с помощью добавления никеля, марганца и азота. Из-за своей кристаллической структуры аустенитные стали не подвергаются термообработке. Кроме того они являются немагнитными.
Структура Аустенитной нержавеющей стали
Аустенитная нержавеющая сталь подразделяется на два основных типа: 300 и 200. Первая приобретает аустенитную структуру после добавки никеля, тогда как во второй никель заменяют на марганец и азот. Нержавеющая сталь 300 имеет множество подтипов. Самой распространенной является тип 304 (она ещё называется как 18/8 или A2). Нержавеющая сталь 304 используется для изготовления кухонной утвари, столовых приборов, а также для изготовления кухонного оборудования. Следующая по распространенности является нержавеющая аустенитная сталь 316. Для повышения устойчивости к кислотам и для устойчивости к локальным воздействиям — она содержит молибден.
Строение и свойства
При повышении температуры аустенитные стали превращаются в жидкий раствор с определённым процентным отношением железа и углерода. Если температура раствора превышает линию так называемого ликвидуса (это около 1700 °C),образовавшийся расплав становится статически неустойчивым. Его состояние оценивают по двум составляющим:фазовой и структурной. Для первой составляющей основным показателем является фаза состояния полученной смеси. Она определяет состояние металла по следующим показателям:
- раствора углерода в железе;
- количество различных образований (непосредственно феррит, в том числе высокотемпературный, аустенит, цементит).
Структурная составляющая часть образца определяется как гомогенная или квазигомогенная форма. Общая структура образовавшегося феррита составляет равноосные кристаллы. В трёхмерном пространстве решётка ферритной фазы представляет объёмно-центрированный куба. Эти кристаллы определяют твёрдость феррита и способность углерода в нём растворяться. Опыт показывает, что при температуре равной 727 градусов в феррите растворяется только 0,02% углерода. Кроме этого к основным свойствам феррита относятся:
- обладает сильными ферромагнитными свойствами (до температуры 770 °С – точка Кюри);
- является теплопроводным элементом;
- хорошим проводником электрического тока;
- обладает повышенной пластичностью.
К основным недостаткам относятся невысокая прочность и недостаточная твёрдость. Последний показатель зависит от величины образованного зерна и находится в интервале от 65 до 130 НВ.
В зависимости от этапа проходящих превращений ферритная фаза находится в следующих состояниях:
- как основа кристаллической решётки образовавшегося сплава;
- второе или избыточное состояние (располагается по границам так называемых перлитных образований);
- элемент феррито-графитного эвтектоида.
Каждое состояние требует точного определения и выявления возникающих преобразований. От них во многом зависят характеристики конечного продукта.Полное отсутствие ферритного образования или незначительное его содержание проявляется с образованием горячих трещин. Завышенное содержание этого показателя снижает пластичность, ударную вязкость и антикоррозийную стойкость.