Вольфрам

Химические свойства

Существует два хорошо охарактеризованных соединения вольфрама и углерода, WC и полукарбид вольфрама

, W 2 C . Оба соединения могут присутствовать в покрытиях, и пропорции могут зависеть от метода покрытия.

Еще одно метастабильное соединение вольфрама и углерода может быть создано путем нагревания фазы WC до высоких температур с помощью плазмы, а затем закалки в инертном газе (плазменная сфероидизация).

Этот процесс вызывает сфероидизацию макрокристаллических частиц WC и приводит к образованию нестеициометрической высокотемпературной фазы WC. 1-х существует в метастабильной форме при комнатной температуре. Тонкая микроструктура этой фазы обеспечивает высокую твердость (2800-3500 HV) в сочетании с хорошей ударной вязкостью по сравнению с другими соединениями карбида вольфрама. Мета-стабильная природа этого соединения приводит к снижению высокотемпературной стабильности.

При высоких температурах WC разлагается на вольфрам и углерод, и это может происходить во время высокотемпературного термического напыления , например, в методах высокоскоростного кислородного топлива (HVOF) и высокоэнергетической плазмы (HEP).

Окисление WC начинается при 500–600 ° C (932–1112 ° F). Он устойчив к кислотам и подвергается воздействию только фтористоводородной кислоты / азотной кислоты (HF / HNO 3 ) смеси выше комнатной температуры. Он реагирует с газообразным фтором при комнатной температуре и хлором выше 400 ° C (752 ° F) и не реагирует с сушкой H 2 до температуры плавления. Мелкодисперсный WC легко окисляется в водных растворах перекиси водорода . При высоких температурах и давлениях он вступает в реакцию с водным раствором карбоната натрия с образованием вольфрамата натрия. Эта процедура используется для извлечения металлолома из цементированного карбида из-за его селективности.

Тугоплавкость металлов

Внимание этой характеристике уделяют все инженеры и конструкторы, работающие в машиностроении. В зависимости от величины этой характеристики, человек может рассчитать и определить в какую конструкцию можно применить те или иные тугоплавкие материалы

Материалы, температура плавления который выше температуры плавления железа, равной 1539 °С, называются тугоплавкими. Самые тугоплавкие материалы:

  • тантал;
  • ниобий;
  • молибден;
  • рений;
  • вольфрам.

Полный список содержит больше химических элементов, но не все из них получили распространенное применение в производстве и некоторые обладают меньшими температурами плавления или радиоактивны. Вольфрам – самый тугоплавкий металл. На вид он светло-серого цвета, твердость и вес достаточно велики. Однако, он становится хрупким при низких температурах и его легко сломать (хладноломкость). Если нагреть вольфрам больше 400 °С, он станет пластичным. С другими веществами вольфрам плохо соединяется. Добывают его из сложных и редких минералов руд, таких как:

  • шеелит;
  • ферберит;
  • вольфрамит;
  • гюбнерит.

Переработка руды очень сложный и дорогостоящий процесс. Извлеченный материал формируют в бруски или готовые детали. Вольфрам был открыт в XVIII веке, но долгое время не существовало печей, способных нагреваться до температуры плавления этого тугоплавкого металла. Ученые провели множество исследований и подтвердили, что вольфрам самый тугоплавкий металл. Стоит отметить, что по одной из теорий, сиборгий имеет большую температуру плавления, но не удается провести достаточное количество исследований, т.к. он радиоактивен и нестабилен.

Добавление вольфрама в сталь увеличивает ее твердость, поэтому его стали применять в изготовлении режущего инструмента, что увеличило скорость резания и тем самым привело к росту производства. Высокая стоимость и трудность обработки этого тугоплавкого металла сказываются на сферах его применения. Он используется в тех случаях, когда нет возможности применить другой. Его достоинства:

  • устойчив к высоким температурам;
  • повышенная твердость;
  • прочный или упругий при определенных температурах;

Все эти характеристики помогают вольфраму найти широкое применение в различных сферах, таких как:

  • металлургия, для легированных сталей;
  • электротехника, для нитей накаливания, электродов и др.;
  • машиностроение, в изготовлении узлов зубчатых передач и валов, редукторов и многом другом;
  • авиационное производство, в изготовлении двигателей;
  • космическая отрасль, применяется в соплах ракет и реактивных двигателях;
  • военно-промышленный комплекс, для бронебойных снарядов и патронов, брони военной техники, в устройстве торпед и гранат;
  • химическая промышленность, вольфрам обладает хорошей коррозийной стойкостью к действию кислот, поэтому из него делают сетки для фильтров. Кроме того соединения с вольфрамом используют в качестве красителей тканей, в производстве одежды для пожарных и многом другом.

Такой перечень отраслей, где используется этот тугоплавкий металл говорит о том, что его значение для человечества очень велико. Ежегодно по всему миру изготавливают десятки тысяч тон чистого вольфрама и с каждым годом потребность в нем растет.

Применение вольфрама в промышленности

Вольфрам начали активно применять в различных сферах промышленности не так уж и давно. На протяжении долгого времени он не мог найти практического применения, но сейчас больше половины всего вольфрама идет на производство вольфрамовых сплавов различной прочности. Перечислим сферы и области применения вольфрама более подробно:

— электротехническая промышленность. Вольфрам незаменим в данной сфере, так как из его изготавливают нити накалывания электрических ламп, катоды рентгеновских трубок и различные детали для радиоламп.

— химическая промышленность. В данной сфере вольфрам применяют в качестве сырья для изготовления пигментов, красок и смазочных материалов. Помимо этого, данный неметаллический элемент применяют как катализатор.

— военная промышленность. Вольфрам был одним из основных сырьевых материалов в данной сфере во времена Первой Мировой войны. Его применяют для производства пуль, орудийной стали и бронебойных снарядов.

— автомобильная промышленность. Вольфрам выступает в качестве легированного элемента некоторых видов стали. Он придает стали уникальных свойств и позволяет использовать её для производства автомобильных прочных рессор. Более подробно об этом можно узнать в нашей статье «Сферы и области применения стали».

— железнодорожная промышленность. Вольфрамовая сталь применяется для производства железнодорожных рельс и вагонов. Такие рельсы могут выдержать очень большие нагрузки. Кроме того, их срок эксплуатации намного больше, чем из других видов стали.

— металлургическая промышленность

Наиболее важное предназначение вольфрама в металлургии – это легирование им сталей, а также производство твердых сплавов

Тяжелые вольфрамовые сплавы

Вольфрам — самый тугоплавкий металл из известных человечеству. Он также имеет очень высокую плотность, одну из самых высоких среди металлов, что, в свою очередь, наделяет вольфрам отличными радиационно-защитными свойствами

Тугоплавкость и высокая плотность — эти два основных свойства и определили его чрезвычайную важность в современных технологиях и направления его использования

Но современные направления науки и техники порой требуют от тугоплавких металлов, и в частности, от вольфрама, такой совокупности свойств, которую вольфрам в чистом виде не силах обеспечить. К примеру, часто возникает необходимость изготовления деталей очень сложной формы. Вольфрам является довольно хрупким материалом при нормальных условиях, что делает его обработку затруднительной. Другой пример — высокая электропроводность при высоких температурах. Электропроводность вольфрама не сравнится с электропроводностью меди, но при высоких температурах медные контакты использовать просто невозможно.

Поэтому в таких случаях применяют так называемые тяжелые сплавы на основе вольфрама или просто вольфрамовые сплавы.Чаще всего это сплавы вольфрама с никелем, железом, медью или сразу с несколькими металлами. Содержание вольфрама, как правило, составляет от 90% до 98% по массе. Фактически, это не совсем сплавы, а так называемые псевдосплавы. Такое название они получили из-за особенностей технологии их производства. Дело в том, что входящие в состав вольфрамовых псевдосплавов компоненты имеют существенно различные физические свойства, главным образом, температуру плавления. Сделать из них сплав в привычном понимании почти невозможно, т.к. при температуре плавления вольфрама большинство металлов находятся в состоянии газов или летучих жидкостей. Поэтому псевдосплавы изготавливают методом порошковой металлургии. Порошки компонентов псевдосплава смешиваются, прессуются и спекаются в присутствии жидкой фазы более легкоплавких металлов и твердой фазы вольфрама. Медь, никель и железо служат связующим веществом для вольфрамовых зерен, что обеспечивает увеличение пластичности, обрабатываемости и электропроводности.

Марки вольфрамовых сплавов, получивших наибольшую популярность в России:

  • ВНЖ 7-3 (с содержанием 7% никеля и 3% железа)
  • ВНЖ-95 (с содержанием 3% никеля и 2% железа)
  • ВНЖ-97.5 (с содержанием 1.5% никеля и 1% железа)
  • ВНМ 5-3 (с содержанием 5% никеля и 3% меди)
  • ВНМ 3-2 (с содержанием 3% никеля и 2% меди)
  • ВНМ 2-1 (с содержанием 2% никеля и 1% меди)
  • ВД-20 (с содержанием 80% вольфрама и 20% меди)
  • ВД-25 (с содержанием 75% вольфрама и 25% меди)
  • ВД-30 (с содержанием 70% вольфрама и 30% меди)

Некоторые области применения вольфрамовых сплавов:

Главные области применения вольфрамовых сплавов определяются их свойствами. К примеру, одним из важнейших свойств вольфрамовых сплавов являются высокие показатели радиационной защиты, что главным образом определяется высокой плотностью этих сплавов (вольфрамовые сплавы более чем в 1,5 раза тяжелее свинца). Тяжелые вольфрамовые сплавы были признаны лучшим материалом для защиты от гамма-излучения, по сравнению с традиционными свинцом, сталью, чугуном и водой. Данное свойство обусловило широкое применение сплавов ВНЖ и ВНМ в следующих областях:

  • Емкости, контейнеры для хранения радиоактивных веществ
  • Детали приборов радиоактивного каротажа
  • Оборудование неразрушающего контроля
  • Дозиметрическое оборудование и радиационный контроль
  • Коллиматоры, защитные экраны и другие детали различного оборудования

Кроме этого, вольфрамовые сплавы широко применяются для изготовления различного рода утяжелителей, электрических контактов, а также комплектующих продукции оборонной промышленности.

Помимо вольфрамовых псевдосплавов, также получили распространение и сплавы на основе молибдена.

ООО «ЕРГАРДА» изготовит изделия любой сложности из вольфрамовых сплавов по Вашему заказу.

Применение[ | ]

Главное применение вольфрама — как основа тугоплавких материалов в металлургии.

Металлический вольфрам

Нить накаливания

  • Тугоплавкость вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
  • Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).
  • Вольфрам используют в качестве электродов для аргонно-дуговой сварки.
  • Сплавы вольфрама, ввиду его высокой температуры плавления, получают методом порошковой металлургии. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей.
  • Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.
  • Высокая плотность вольфрама делает его удобным для защиты от ионизирующего излучения. Несмотря на бо́льшую плотность по сравнению с традиционным и более дешёвым свинцом, защита из вольфрама оказывается менее тяжёлой при равных защитных свойствах или более эффективной при равном весе. Из-за тугоплавкости и твёрдости вольфрама, затрудняющих его обработку, в таких случаях используются более пластичные сплавы вольфрама с добавлением никеля, железа, меди и др. либо взвесь порошкообразного вольфрама (или его соединений) в полимерной основе.

Соединения вольфрама

  • Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам.
  • Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка.
  • Некоторые соединения вольфрама применяются как катализаторы и пигменты.
  • Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.
  • Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К).

Другие сферы применения

Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Рынок вольфрама

Цены на металлический вольфрам (содержание элемента порядка 99 %) на конец 2010 года составляли около 40—42 долларов США за килограмм, в мае 2011 года составляли около 53—55 долларов США за килограмм. Полуфабрикаты от 58 USD (прутки) до 168 (тонкая полоса). В 2014 году цены на вольфрам колебались в диапазоне от 55 до 57 USD.

Основные характеристики вольфрама:

  1. Порядковый номер74
  2. Атомный вес183,82
  3. Плотность19,3
  4. Радиус атома1,41
  5. Радиус шестивалентного иона0,50
  6. Электросопротивление5,5*20
  7. Температура плавления3377

Удельное электросопротивление 5,5 ом·см (20 °C). На воздухе вольфрам не изменяется, однако в присутствии влаги порошкообразный вольфрам медленно окисляется; при 700 °C вольфрам разлагает воду с образованием двуокиси вольфрама и водорода. Кислоты на вольфрам почти не действуют. Концентрированная азотная кислота и царская водка окисляют вольфрам с поверхности; растворяется же он в смеси фтористоводородной и азотной кислот.

Растворение металлического вольфрама возможно также в насыщенном растворе щавелевой кислоты в присутствии пергидроля, при этом образуются комплексные соединения вольфрама с щавелевой кислотой.

Температура кипения вольфрама около 5800°K. Упругость паров вольфрама изменяется с температурой следующим образом:

Температура °C 3990 4507 4690 4886 5168 5403
Упругость пара, мм рт.ст 1 10 20 60 100 200

Растворы щелочей не действуют на вольфрам, однако в присутствии окислителей, например перекиси водорода или персульфата аммония, вольфрам может растворяться в аммиаке. В присутствии же окислителей металлический вольфрам хорошо сплавляется со щелочами или с содой, образуя, так же как и в предыдущем случае, соль вольфрамовой кислоты.

Трехокись вольфрама или вольфрамовый ангидрид. Важнейшее соединение, являющееся конечным продуктом переработки вольфрамового сырья,-желтое порошкообразное вещество, при нагревании оранжевое. Упругость паров трехокиси вольфрама достигает одной атмосферы при 1357°C, но заметная вагонка начинается при значительно более низких температурах. Поэтому при получении трехокиси вольфрама прокаливанием вольфрамовой кислоты не рекомендуется, во избежание потерь, повышать температуру печи выше 800-850°C.Если же требуется прокалить вольфрамовую кислоту с целью количественного определения вольфрама, то придерживаются еще более низких температур – 750-800°C.

Трехокись вольфрама практически нерастворима в воде и в кислотах.

Свойства

Рассматриваемое вещество представлено серым порошком в двух кристаллографических вариантах: с кубической (полукарбид) и гексагональной (монокарбид) решетками. Обе модификации встречаются в температурном диапазоне 2525 — 2755°С. Вторая фаза ввиду отсутствия области гомогенности при отклонении от стехиометрического состава образует графит или переходит в W2C, а при температуре более 2755°С разлагается до углерода и первой фазы. Последняя отличается обширной областью гомогенности, сокращающейся при снижении температуры. Монокарбид вольфрама менее тверд в сравнении с полукарбидом, но способен формировать кристаллы. Второй вариант значительно более температуро- и износоустойчив. К тому же он способен к внедрению в твердые растворы. Карбид вольфрама отличается хрупкостью, но под влиянием нагрузки проявляет пластичность полосами скольжения. Кристаллы рассматриваемого вещества характеризуются анизотропией твердости от 13 до 22 ГПа на разных кристаллографических плоскостях.

Монокарбид имеет температуру плавления 2870°C, кипения — 6000°C. Его молярная теплоемкость равна 35,74 Дж/(моль-*К), теплопроводность — 29,33 кДж/моль. Плотность карбида вольфрама данного типа составляет 15,77 г/см3. Несмотря на то, что температура плавления большая, термостойкость рассматриваемого материала низка. Это обусловлено отсутствием термического расширения ввиду жесткой структуры. При этом карбид вольфрама характеризуется высокой теплопроводностью. С повышением температуры данный параметр у монокарбида возрастает вдвое быстрее, чем у полукарбида. Рассматриваемые материалы имеют хорошую электропроводность, особенно полукарбид (в 4 раза выше, чем монокарбид). Удельное электросопротивление возрастает с повышением температуры, но при этом снижается упругость. Это обуславливает обрабатываемость электрофизическими методами. Так, при введении источника тепла в области обработки возрастает температура, способствуя размеренному разрушению структуры материала. Твердость определяется температурой формирования карбидов в вольфрамовом порошке и (в меньшей степени) их пористостью. С ростом температуры увеличивается подвижность атомов составляющих соединения элементов, вследствие чего устраняются дефекты в зернах. Анизотропия параметров карбидов вольфрама меньше, чем для металлов. К тому же данные материалы отличаются наилучшей для тугоплавких металлов упругостью, которая увеличивается с ростом пористости. Однако пластичность низкая (до 0,015%). Карбид вольфрама характеризуется стойкостью к многим кислотам, а также их смесям при обычной температуре, но растворим в некоторых кислотах при кипении. Не подвержен растворению в 20% и 10% гидроксиде натрия. Ввиду высокой летучести оксида вольфрама начинает окисляться при 500 — 700°C и завершает окисление при более 800°C. Наконец, ввиду химической инертности данное соединение нетоксично.

Сплав – карбид – вольфрам

Сплав карбида вольфрама с 16 % кобальта настолько тверд, что может частично заменить алмаз при бурении скважин.

В сплавах карбида вольфрама с молибденом может быть 90 и более процентов твердой фазы. Между частицами карбида вольфрама существуют контакты, хорошо различимые в микроскопе. А в дисперсионно-упрочненных сплавах содержание твердой фазы составляет не более 20 процентов. Твердые частицы упрочняющей фазы изолированы, здесь металлической фазой. Композиция карбида вольфрама с – кобальтом как исключение причислена к классу диспер-сионно-упрочнен ных сплавов. Над загадкой счастливого брака карбида вольфрама и кобальта и технологией получения твердых сплавов на их основе продолжают работать научные коллективы многих стран.

Стеллиты представляют собой сплавы карбидов вольфрама и хрома, связанные кобальтом и железом. Присутствие вольфрама и кобальта удорожает эти сплавы и поэтому они применяются значительно реже сормайта.

Чем больше в сплаве карбида вольфрама, тем сплав тверже, но тем более он хрупок. Вязкость сплава, дающая возможность воспринимать ударные нагрузки, обеспечивается кобальтом. Сплав ВК2, содержащий всего 2 % кобальта, обладает весьма низкой вязкостью.

Чем больше в сплаве карбида вольфрама ( сплавы ВК), тем более он хрупок и менее прочен.

Металлокерамические твердые сплавы представляют собой сплавы карбидов вольфрама и карбидов титана с кобальтом и приготовляются путем прессования и спекания. Эти сплавы применяются для скоростной обработки металлов резанием в виде пластинок, напаиваемых на державку езца. Металлокерамические твердые стали разделяются по ГОСТ 3882 – 53 на две группы.

В табл. 51 приведены некоторые свойства покрытий из сплавов карбида вольфрама.

К первой группе относятся вольфрамовые однокар-бидные сплавы типа ВК ( ВК2, ВКЗМ, ВК4, ВК6, ВК6М, ВК8, ВК8В), представляющие сплав карбида вольфрама с кобальтом, содержание которого колеблется в пределах от 2 до 8 % и выше.

Наиболее подробно изученными являются сплавы монокарбида вольфрама с кубическими карбидами, среди которых особое внимание уделяется сложным карбидам TiC-WC, нашедшим широкое практическое использование в составе металлокерамических твердых сплавов. Показано, что сплавы карбида вольфрама с кубическими карбидами обладают оптимальными свойствами в области твердых растворов

При этом четко проявляется общая тенденция понижения растворимости карбида вольфрама в кубических карбидах при переходе от металлов IV к металлам V группы. Так как в карбиде вольфрама прочность связи Me-С низкая ( из-за незначительной стабилизации 5 / з3 – конфигураций атомов углерода) и WC обладает высоким запасом свободной энергии, то указанный характер изменения растворимости WC в кубических карбидах указывает на различную степень их взаимодействия с карбидом вольфрама, определяемую донорными свойствами металлов карбидов-растворителей.

Еще шире, чем в чистом виде, вольфрам применяется в форме сплавов. Одни из самых важных – металлокврамические сплавы карбида вольфрама и кобальта, которые получили исключительно большое значение, так как Обладают чрезвычайно высокой твердостью.

Вольфрам образует карбиды WC и W2C – вещества, по твердости близкие к алмазу; их применяют в производстве твердых материалов. Большое значение, в частности для буровой техники, имеют сплавы карбида вольфрама с кобальтом, обладающие чрезвычайно большой твердостью. Такой сверхтвердый сплав, называемый победитом, содержит около 90 % карбида вольфрама и около 10 % кобальта.

Типы ( модели и технические характеристики двухшнековых машин.

Оба шнековых вала выполнены из нитрированной стали. При желании для переработки абразивных материалов они могут быть полностью или частично покрыты сплавом карбидов вольфрама. Корпус машины охватывает зоны загрузки, смешения и участок дросселирующего элемента. К нему на фланцах присоединен корпус с двумя цилиндрами для разгрузочных шнеков. Корпус этих шнеков изготовлен также из нитрированной стали. Он укреплен на станине машины откидными болтами и при чистке машины может отводиться на роликах.

Металлический – кобальт, серовато-стального цвета, по внешнему виду сходен с железом, но тверже его и никеля. В тонко раздробленном состоянии он легко окисляется во влажном воздухе. При температуре белого каления он сгорает в СозО – i. Из сплавов кобальта назовем стеллит, сталь, содержащую кобальт и хром, отличающуюся весьма большой твердостью и противокоррозийными свойствами; карбалой, сплав карбида вольфрама с кобальтом, также отличается своей очень большой твердостью; магнитную сталь, содержащую 35 % кобальта. Окись кобальта служит для окраски стекла и эмали в синий цвет.

Классификация

Многообразие подобных материалов требует четкого разделения по характерным особенностям. Классификация твердых сплавов производится по таким признакам:

  • составу химических элементов (наименованию, процентному содержанию);
  • по технологии производства;
  • области применения.

По присутствующим химическим элементам их делят на следующие категории:

  • вольфрамокобальтовые (маркировка ВК);
  • титановольфрамокобальтовые (ТК);
  • титанотанталовольфрамокобальтовые (ТТК).

По применяемым технологиям получения разделяют на: спекаемые, литые, порошкообразные. Спекаемые, состоят из карбидов.  Делятся на три группы:

  • однокарбидные (карбид вольфрама);
  • двухкарбидные (включающие карбиды двух металлов: титана и вольфрама);
  • трехкарбидные (сваренные из трех элементов).

По процентному содержанию каждого элемента их делят на следующие группы. К первой относятся материалы, состоящие из карбида вольфрама и кобальт. Они имеют обозначения ВК. К этой многочисленной группе относятся сплав: ВК4, ВК3М, ВК6М. очень популярным является твердый сплав ВК8 и ВК3. Расшифровывается ВК3 так же, как и все вольфрамовые сплавы. Вторая объединяет титановольфрамовые сплавы. Имеет аббревиатуру ТК. К ней относятся: Т5К10, Т14К8. Третья включает все титанотанталовольфрамовые сплавы. Обозначают ТТК. Например, ТТ7К12 и другие. Четвертая, объединяет материалы, у которых имеется износостойкое покрытие. Они обозначаются аббревиатурой ВП. В нее входят: ВП3115, ВП3325. В основу каждого из них заложена основа известного сплава. Например, у ВПЗ115 основа – ВК6.

Вольфрамосодержащие твердые сплавы

Их маркируют следующим образом – ВК6, ВКЗМ, ВК6М, ВК8. Основной областью применения является изготовление режущего инструмента. Сплав ВК8 применяется для изготовления резцов. Он позволяет обрабатывать чугун. Используют для производства инструмента, способного осуществлять так называемую безстружковую обработку материалов.

Титановольфрамосодержащие твердые сплавы

Из марок Т5К10, Т14К8, Т15К6 изготавливают инструмент для высокоскоростной обработки различных видов стали. С их помощью обрабатывают металлы, различные соединения с повышенными показателями твердости и теплостойкости.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий