Полигональное моделирование

П араметрическое моделирование

Рис.1 Модель компрессора из программы Компас 3D

Для данного вида моделирование используют САПР — Системы Автоматизированного Проектирования (англ. CAD — Computer-Aided Design). Они приспособлены для проектирования деталей, двигателей, автомобилей, вертолётов и ракет, зданий, и применяются в основном в промышленности, строительстве и 3D-печати. Можно выделить поверхностные и твердотельные модели; а также каркасные, которые удобно использовать для визуализации или имитации траектории движения объекта, чтобы сэкономить ресурсы.

В CAD-программах мы получаем не только визуальный образ, как в случае с полигональным моделированием, а точный электронно-геометрический прототип изделия. Он сохраняет измеримую и рабочую информацию, что позволяет: получать расчёты, чертежи, производить изделие на станках ЧПУ или 3D-принтерах. Как правило, работа с САПР (Компас 3D, AutoCAD, SolidWorks, Inventor) подразумевает наличие профильного инженерного образования. Это не касается желающих напечатать на 3D-принтере какую-нибудь хреновину, полезную в хозяйстве.

Сплайновое и полигональное моделирование, основные отличия

Сплайновое моделирование – создание объёмных фигур, с применением специального лекала (сплайнов). Сплайнами могут быть кривые, имеющие любую геометрическую форму: дуги, окружности, прямоугольники и т.п. Каркас, служит основой для создания огибающей поверхности. Метод позволяет создавать модели, с высокой степенью детализации, при этом, поверхность становится боле гладкой. В отличие от полигонов, сплайновое моделирование не требует больших затрат энергии, необходимой для обработки информации. Поэтому, этот способ, часто используют при создании, сложных объектов. Всегда есть возможность вернуться к исходному состоянию.

Нередко, эти виды сравнивают с векторной и растровой графикой. В первом случае, фигуры создаются из точек и направляющих, такое изображение получается плоским, но зато при изменении масштаба, качество картинки не изменяется. Графика на основе растров кажется объёмной, но при увеличении масштаба, качество картинки ухудшается, детали становятся размытыми.

То же самое можно сказать и о моделировании с помощью лекал. Точно так же, как и векторная графика, сплайны способны передавать точность объекта, так как форма создаётся с помощью кривых, неоднократно описывающих экватор. Для точной проработки деталей, поверхность увеличивают в масштабе.

Объекты, созданные на основе полигонов, имеют разную степень детализации.

Хоть расстояние между гранями будет небольшим, и поверхность объекта будет казаться сглаженной, при увеличении масштаба на плоскости появятся шероховатости.

Сплайновое и полигональное моделирование, главные отличия

Сплайновое моделирование – создание объёмных фигур, с использованием специализированного лекала (сплайнов). Сплайнами могут быть кривые, имеющие любую геометрическую форму: дуги, окружности, прямоугольники и т.п. Каркас, служит базой для создания огибающей поверхности. Метод дает прекрасную возможность создавать модели, с большой степенью детализации, при этом, поверхность становится боле гладкой. В отличии от полигонов, сплайновое моделирование не просит больших расходов энергии, нужной для обработки информации. По этому, данный вариант, нередко применяют при разработке, трудных объектов. Всегда имеется возможность вернуться к исходному состоянию.

Нередко, такие варианты сравнивают с векторной и растровой графикой. В первом варианте, фигуры делаются из точек и направляющих, такое изображение выходит плоским, зато при изменении масштаба, качество картинки не меняется. Графика на основе растров кажется объёмной, однако при увеличении масштаба, качество картинки ухудшается, детали становятся размытыми.

То же самое можно сказать и о моделировании при помощи лекал. Точно также, как и векторная графика, сплайны способны передавать точность объекта, так как форма образовывается при помощи кривых, много раз описывающих экватор. Для точной проработки деталей, поверхность делают больше в масштабе.

Объектына основе полигонов, имеют различную степень детализации.

Хоть расстояние между гранями будет маленьким, и поверхность объекта покажется сглаженной, при увеличении масштаба на плоскости появятся шероховатости.

Методики построения полигональных моделей

В 3D Max полигональное моделирование – применяется при проектировании трёхмерных изображений. Способ позволяет создавать реалистичные модели с высокой степенью детализации, что даёт преимущество перед другими редакторами.

Создать полигональную модель можно разными способами:

  • Путём соединения примитивов, когда за основу берётся простое геометрическое тело: шар, куб тор, т.п. При необходимости, можно изменить количество граней, таким образом можно задавать любые размеры примитива.
  • Когда другие методы не подходят, объекты создаются путём прорисовывания, ручным способом.
  • Объекты можно создавать путём вытягивания новых граней из исходного полигона.

Полигональное моделирование так же предусматривает и другие способы построения объектов.

  • Производя манипуляции с вершинами, перемещая, удаляя, вращая в разные стороны, можно менять геометрию поверхности.
  • Что бы придать изделию нужную форму, можно работать с рёбрами, изменяя или перемещая их.
  • Иногда, необходимо изменить геометрию модели, сгладить поверхность или наоборот, сделать шероховатой, в этом случае, моделирование осуществляется с помощью полигонов.

Редактирование полигональных моделей осуществляется в окне одного меню Polygons Edit, с помощью этих окон, можно осуществлять другие команды. Они составляют основу любого 3D редактора. Кроме базовых окон, существуют дополнительные панели, без которых получить качественную модель невозможно, к ним относятся:

  • Инструмент Edit Polygons – предназначен перемещать рёбра, грани или вершины, таким образом, меняется форма изделия.
  • Extrude Face – обеспечивает выдавливание граней или вершин;
  • Split Polygon Tool – разбивает грани, путём создания дополнительных рёбер;

Для достижения удачного процесса моделирования следует помнить основное правило построения:

  • Лишние подобъекты не нужные для создания формы, желательно удалить, так как это замедляет процесс обработки. К примеру, некоторые вершины могут оказаться лишними от них избавляются, переключив режим редактирования, что бы удалить не нужные;
  • Симметричные модели желательно создавать из одной половины, после генерируется зеркальная копия. Далее объекты сливаются в одно целое, получившееся изделие сглаживается.
  • Чтобы добиться гладкой поверхности, используют инструмент (Smooth), однако метод заключается в увеличении числа полигонов, по этому, злоупотреблять этим не желательно. В противном случае на обработку детали уйдёт много времени, что затруднит процесс проектирования.

Необходимый набор для сборки, схемы и развертки полигональной фигуры

Позаботьтесь о хорошем, удобном столе и стуле, нужно, что освещение падало из-за левого плеча, используйте настольную лампу. Чтобы не выпачкать стол клеем застелите его плёнкой или положите лист стекла с зашлифованными краями, чтобы не порезаться. Чтобы научиться складывать базовые изделия, вам понадобятся простые приспособления вроде ножниц, канцелярского ножа, клея ПВА и кисточки для его нанесения.

Отдайте предпочтение строительному клею ПВА — из всех разновидностей у него наиболее густая консистенция, он не портит бумагу, делая её мокрой и вязкой, как обычный. Используются разные виды — от папиросной до обычного картона. Новичкам советуют начинать с акварельной, в 200 грамм на м2 для крупных элементов и чертёжной разновидности 140-160 грамм – при разработке мелких частей.

Бумага для паперкрафта и клей для бумажных моделей

Основным материалом для создания является, естественно, обычная бумага, но так как она не сильно надёжная и хрупкая, советуем обратить внимание на полукартон, либо же обыкновенный картон. Детали из него более крепкие и придают готовому творению износостойкость

Удивительный кит с подсветкой—эксклюзивный ночник в спальне вашего ребёнка

У каждого мастера имеются свои секреты, вот и мы хотим поделиться с вами открытием.

Заготовки гораздо удобнее приклеивать узким двухсторонним скотчем. Он скрепляет моментально и угрозы “расклеиться” ваше творчество не потерпит.

Но также неплохой связующий предмет для элементов – клеевой раствор. Выбирайте вариант, который удобнее.

Модель из бумаги

Рабочий процесс создания проходит в несколько простых этапов. Перед началом процесса мастер определяется, какую фигурку он хочет сконструировать. На самом деле, можно смастерить практически любое изделие, но бумажное моделирование чаще предполагает такие варианты:

  • многогранники с выпуклыми и вогнутыми углами, геометрические фигуры
  • копии зданий в масштабе
  • макеты автомобилей премиум класса
  • танки, тяжелые орудия, бронемашины
  • поезда, корабли и подлодки, самолеты

Бумага для моделирования—основной рабочий материал

Следует уделить особое внимание её качеству! Для начального творчества лучше всего использовать обыкновенные листы формата А4, они имеют хорошее качество и является самой белоснежной по отношению к другим маркам. Плотность – 80 г/м

Советую приобретать специальную, для черчения.

Решение

Насколько далеко вы продвинетесь в снижении этого эффекта зависит только от вас, но важно всегда держать в голове вашу конечную цель. Только вы можете решать, когда желаемое отражение уже максимально хорошее или можно получить более чистый меш. Создаёте ли вы его для статичной картинки? Сколько изображений вы можете создать? Можете ли вы исправить отражения в Photoshop или сделать это для анимации? Или же вы просто моделируете для своего удовольствия и желаете создать идеальную машину?

Создаёте ли вы его для статичной картинки? Сколько изображений вы можете создать? Можете ли вы исправить отражения в Photoshop или сделать это для анимации? Или же вы просто моделируете для своего удовольствия и желаете создать идеальную машину?

Перед тем как переходить к любому сложному объекту, как например, автомобилю, лучше опробовать на простых примерах, а потом рассмотреть некоторые практические случаи.

Порядок действий

Условные обозначения:

— сплошная линия – это граница элемента, по ней нужно вырезать деталь;

— штрих-пунктир – линия сгиба НА СЕБЯ;

— пунктир – линия сгиба ОТ СЕБЯ;

— цифрами обозначены участки склеивания; грани двух деталей с одинаковыми цифрами склеиваются между собой.

Вырежьте все детали.

Сделать это можно ножницами или канцелярским ножом: прикладывайте линейку вдоль сплошной линии и проводите по ней канцелярским ножом.

Если будете вырезать детали именно ножом, подумайте, на что положить листы, чтобы не испортить стол.

Лучше всего использовать специальный коврик для резки. Но при его отсутствии можно задействовать что-нибудь из подручных материалов: лист фанеры или оргалита, кусок линолеума и т. п.

Согните детали в нужных местах.

Чтобы сгибы получились чёткими и аккуратными, нужно ПРОДАВИТЬ каждую линию, т. е. положить вдоль неё линейку и провести по линии с нажимом (“пробиговать”) подходящим инструментом.

В качестве инструмента для биговки можно использовать остриё циркуля, вязальную спицу, не пишущую шариковую ручку.

Можно даже биговать обратной (тупой) стороной лезвия канцелярского ножа.

После биговки согните детали в соответствии с обозначениями – НА СЕБЯ (штрих-пунктир) или ОТ СЕБЯ (пунктир).

Склейте детали.

Грани двух деталей с одинаковыми цифрами склеиваются между собой, клапанами и разметкой внутрь.

Можно использовать канцелярский клей, а можно супер-клеи — для ускорения процесса.

Тонким слоем наносите клей на клапан и аккуратно прижимайте детали друг к другу.

Шкатулка готова!

А теперь можно наполнить коробочку конфетами или другими приятными мелочами и подарить. Улыбка дорогого человека — отличная награда за старания!

Буду рада, если этот мастер-класс по полигональному моделированию из бумаги окажется интересным и полезным для Вас!

До новых встреч в КАРТОНКИНО!

NURBS моделирование

NURBS моделирование или технология Non-Uniform Rational B-Spline – это технология неоднородных рациональных В-сплайнов, создание плавных форм и моделей, у которых нет острых краев, как у полигональных моделей. Именно из-за этой отличительной черты технологию NURBS применяют для построения органических моделей и объектов (растений, животных, людей).

NURBS-кривые, используемые в данном моделировании, бывают двух видов: Р (Point) кривые и CV (Control Vertex) кривые. Point кривые управляются вершинами, находящимися непосредственно на самой линии или объекте, а Control Vertex кривые управляются точками, лежащими за пределами линии или объекта. Разницу наглядно видно на иллюстрации:

А стоит ли оно того?

Согласно данным Statista, глобальный рынок дополненной реальности (AR), виртуальной реальности (VR) и смешанной реальности (MR) достигнет 30,7 млрд. долларов в 2021 году, а к 2024 году приблизится к 300 млрд. долларов. То есть за 4 года вырастет в 10 раз, что однозначно приведёт к увеличению востребованности специалистов по 3D-моделированию.

Проектирование виртуальных миров — реальная задача ближайшего будущего. Кроме того, 3D-моделлеры будут стабильно востребованы в промышленности, а количество сфер применения специальности только растёт. Поэтому, если вы в детстве мечтали создавать космические корабли, то вы к этому близки.

Если вернуться на Землю, то уже сейчас на HeadHunter по запросу «3D-моделирование» открыто 643 вакансии. В среднем зарплаты стартуют от 70 тысяч рублей и достигают 300 тысяч рублей, например, для должностей Lead 3D Artist и Motion Designer 2D/3D. Специалисты требуются в самых разных сферах и под самые разные задачи: от создания игровых персонажей и моделей ювелирных изделий в ZBRUSH, проектирования мебели в AutoCAD до моделирования результатов лечения в стоматологии, как дополнения к основной специальности врача.

Поэтому не редкость, что понимая потенциал отрасли, программисты перепрофилируются в 3D-моделлеров. Так что, если вы ощущаете тягу к работе с визуалом, то однозначно стоит попробовать себя в этой сфере.

Низкополигональные миры

Наверное, все уже слышали о подобного рода иллюстрациях. В процессе создания объёмного 3D-изделия, она формируется при помощи полигонов. Чем их численность выше, тем реалистичнее будет вид. Раньше всегда ценилась высокая степень проработки изображений и мастера стремились к высокому числу полигонов, заготовки с низким числом были лишь набросками, считались незаконченной работой.

французская улица, кофейня и дама в шляпе

Для сборки сурового викинга с топором потребуется неделя усидчивости, не меньше.

Jeremiah Shaw

Пример того как можно сочетая два цвета (серый и зелёный) и три простые фигуры дерево, трава и камень создать низкополигональный шедевр, причем масштаб зависит только от вашего воображения и возможностей.

Приемы моделирования объектов

Конструирование при помощи вершин

Основу сетки составляют с прямыми углами ячейки, каждая имеет собственные вершины, при их помощи происходит редактирование. Что бы создать другой объект, нужно произвести действия с точками вершин.

В качестве наглядного примера, применяется куб, после, активировав F9, не снимая выделения, переходят в режим редактирования вершин. Применив инструмент Move Tool, верхние точки перемещаются, так, что бы примитив принял иную форму. Если понадобится сберечь симметрию, удобней всего воспользоваться инструментом Scale Tool. Воспользовавшись разными инструментами можно достичь совсем уникальных результатов, к примеру, во время вращения, вершинах приобретут спиралевидную форму.

Кроме всего другого, для вершин есть необыкновенный метод стёсывания, дающий возможность создавать много граней из одной.

Применение рёбер в планировании

Такой способ схож с идущим до этого, редактирование рёбер выполняется по аналогичному принципу, что и с вершинами. В работе это работает так: в качестве базового элемента образовывается куб, при нажатии клавиш F10 активизируется редактор рёбер. Дальше, как пример вытягивается одна и разных граней ребра. После этого, возникнет добавочная поверхность, аналогичную операцию можно повторить и с соседними рёбрами.

Проектирование моделей при помощи полигонов

Сразу нужно отметить, это самый популярный метод создания трудных объёмных конструкций. В данном случае работа проходит с полигонами, производя разные действия разрешается менять форму, размер, создавать более непростые объекты. Как и в предыдущих примерах, редактирование выполняется по подобному сценарию. Активизировав кнопку F11, запускается редактирование полигонов, заранее выделив один из примитивов, можно работать с гранями, меняя их положение.

Дополнительно доступно много приёмов по преобразованию граней.

При разбивании грани на 2 половины, образовывается ещё одно ребро. После активации команды правка, курсор грызуны изменится, после чего необходимо отметить вершины нового ребра и выйти из режима правки, кликнув на пустом поле. После чего можно выполнять любые действия относительно новых рёбер.

Геометрическая теория и многоугольники

Базовым объектом, используемым при моделировании сетки, является вершина, точка в трехмерном пространстве. Две вершины, соединенные прямой линией, становятся край. Три вершины, соединенные между собой тремя ребрами, определяют треугольник, что является самым простым многоугольник в Евклидово пространство. Более сложный полигоны может быть создан из нескольких треугольников или как один объект с более чем 3 вершинами. Четырехсторонние многоугольники (обычно называемые четырехугольниками) и треугольники являются наиболее распространенными формами, используемыми в многоугольном моделировании. Группа многоугольников, соединенных друг с другом общими вершинами, обычно называется элемент. Каждый из многоугольников, составляющих элемент, называется лицо.

В Евклидова геометрия, любые три неколлинеарные точки определяют самолет. По этой причине треугольники всегда находятся в одной плоскости. Однако это не обязательно верно для более сложных полигонов. Плоский характер треугольников позволяет легко определить их нормальная поверхность, трехмерный вектор, перпендикулярный поверхности треугольника. Нормали поверхности полезны для определения переноса света при трассировке лучей и являются ключевым компонентом популярного Затенение по Фонгу модель. Некоторые системы рендеринга используют нормали вершин вместо нормали граней, чтобы создать более красивую систему освещения за счет большей обработки

Обратите внимание, что у каждого треугольника есть две нормали граней, которые указывают в противоположных направлениях друг от друга. Во многих системах только одна из этих норм считается действительной – другая сторона многоугольника называется задняя сторона, и могут быть сделаны видимыми или невидимыми в зависимости от желания программиста. Много программы моделирования не применяйте строго геометрическую теорию; например, две вершины могут иметь два разных ребра, соединяющих их, занимающих точно такое же пространственное положение

Также возможно, чтобы две вершины существовали в одних и тех же пространственных координатах, или две грани существовали в одном месте. Подобные ситуации обычно нежелательны, и многие пакеты поддерживают функцию автоматической очистки. Однако, если автоматическая очистка отсутствует, их необходимо удалить вручную

Много программы моделирования не применяйте строго геометрическую теорию; например, две вершины могут иметь два разных ребра, соединяющих их, занимающих точно такое же пространственное положение. Также возможно, чтобы две вершины существовали в одних и тех же пространственных координатах, или две грани существовали в одном месте. Подобные ситуации обычно нежелательны, и многие пакеты поддерживают функцию автоматической очистки. Однако, если автоматическая очистка отсутствует, их необходимо удалить вручную.

Группа многоугольников, соединенных общими вершинами, называется сетка. Чтобы сетка выглядела привлекательно при оказано, желательно, чтобы это было несамопересекающийся, что означает, что ни одно ребро не проходит через многоугольник. С другой стороны, сетка не может пробить сама себя. Также желательно, чтобы сетка не содержала ошибок, таких как удвоение вершин, ребер или граней

Для некоторых целей важно, чтобы сетка была многообразие – то есть, что он не содержит дыр или сингулярностей (мест, где два различных участка сетки соединены одной вершиной)

Методики построения полигональных моделей

В 3D Max полигональное моделирование – применяется при проектировании трёхмерных изображений. Способ позволяет создавать реалистичные модели с высокой степенью детализации, что даёт преимущество перед другими редакторами.

Создать полигональную модель можно разными способами:

  • Путём соединения примитивов, когда за основу берётся простое геометрическое тело: шар, куб тор, т.п. При необходимости, можно изменить количество граней, таким образом можно задавать любые размеры примитива.
  • Когда другие методы не подходят, объекты создаются путём прорисовывания, ручным способом.
  • Объекты можно создавать путём вытягивания новых граней из исходного полигона.

Полигональное моделирование так же предусматривает и другие способы построения объектов.

  • Производя манипуляции с вершинами, перемещая, удаляя, вращая в разные стороны, можно менять геометрию поверхности.
  • Что бы придать изделию нужную форму, можно работать с рёбрами, изменяя или перемещая их.
  • Иногда, необходимо изменить геометрию модели, сгладить поверхность или наоборот, сделать шероховатой, в этом случае, моделирование осуществляется с помощью полигонов.

Редактирование полигональных моделей осуществляется в окне одного меню Polygons Edit, с помощью этих окон, можно осуществлять другие команды. Они составляют основу любого 3D редактора. Кроме базовых окон, существуют дополнительные панели, без которых получить качественную модель невозможно, к ним относятся:

  • Инструмент Edit Polygons – предназначен перемещать рёбра, грани или вершины, таким образом, меняется форма изделия.
  • Extrude Face – обеспечивает выдавливание граней или вершин;
  • Split Polygon Tool – разбивает грани, путём создания дополнительных рёбер;

https://youtube.com/watch?v=fREtUh3rANg

Для достижения удачного процесса моделирования следует помнить основное правило построения:

  • Лишние подобъекты не нужные для создания формы, желательно удалить, так как это замедляет процесс обработки. К примеру, некоторые вершины могут оказаться лишними от них избавляются, переключив режим редактирования, что бы удалить не нужные;
  • Симметричные модели желательно создавать из одной половины, после генерируется зеркальная копия. Далее объекты сливаются в одно целое, получившееся изделие сглаживается.
  • Чтобы добиться гладкой поверхности, используют инструмент (Smooth), однако метод заключается в увеличении числа полигонов, по этому, злоупотреблять этим не желательно. В противном случае на обработку детали уйдёт много времени, что затруднит процесс проектирования.

Полигональное моделирование из бумаги

Позволяет визуализировать объект с помощью специальной сетки. Оно появилось в то время, когда для определения местонахождения точки необходимо было вручную вводить её координаты по осям X, Y, Z. Если три точки координат задать как вершины и соединить их ребрами, то получится треугольник, который в 3d моделировании называют полигоном. Как правило, он имеет свою текстуру и цвет, а если объединять несколько,то получится модель. Вместе, они составляют сетку или объект.

modeling decor

Для того, чтобы края модели не имели граненого вида, необходимо, чтобы они были малого размера, а поверхность состояла из маленьких плоскостей. Если предполагается точное моделирование, либо в дальнейшем увеличение его изображения, то необходимо строить модель с большим количеством граней, хотя, если на модель смотреть издали без приближения, достаточно будет небольшого количества. Это и есть полигональное моделирование. Сетка состоит из под объектов и может состоять из огромного количества одинаковых ячеек:

вершина – точка соединения рёбер, может быть множество рёбра – границы граней грани – ячейки сетки, участки плоскости. Чаще всего треугольной или четырехугольной форму.

Что бы создать 3D модель необходимо работать (с частями) подобъектами. Объединяем и делим, меняем их  форму и размер, вращаем, а также применять другие операции, которые позволяются в специализированном программном обеспечении.

Обзор инструментов

После конвертации объекта в режим полигонов откроется перечень основных инструментов:

Сфера 3D-моделирования сегодня безгранична, и с каждым днём появляются новые области её применения. Постараюсь простым языком рассказать о том, что такое 3D-моделирование, сравнить основные виды моделирования, сферы их применения и используемые для этого 3D-редакторы.

Это краткий экскурс для тех, кто интересуется 3D-тематикой и возможностью заняться моделированием

Поэтому заострим внимание только на ключевых моментах, по возможности опуская специфичную терминологию. Прежде всего, нужно определиться с видами 3D-моделирования

В интернете встречается немало способов их классификации, одни и те же виды моделирования носят порой различные названия. Но проще всего классифицировать их по способам реализации.

  1. Параметрическое моделирование
  2. Воксельное моделирование
  3. Полигональное моделирование
  4. Сплайновое моделирование (NURBS)
  5. Скульптинг

Корректируем положение рёбер в окне проекции Top относительно чертежа

Теперь нам нужно на виде сверху скорректировать рёбра по линии чертежа бампера. Для этого перейдём к проекции Top, последовательно выделяя рёбра и перенося их относительно линии бампера.

Обратите внимание, что в проекции Top мы обнаружили такую картину:

Рёбра в окне проекции Top

Добавленные нами рёбра распределены от доработанного профиля до центра бампера. Чем ближе они к профилю, тем более замысловатую форму имеют. И наоборот, чем ближе к центру, тем ровнее расположены. Давайте выровняем их относительно длинной стороны.

Перейдите на уровень подобъекта Vertex, включите ограничение по рёбрам — свиток Edit Geometry — Constraints — Edge.

Не забывайте переводить эту опцию в положение None после того, как выполните нужное действие. Иначе впоследствии точки будут перемещаться только по рёбрам.

Выделите первую группу вершин. Это можно делать как на проекции вида сверху (Top), так и на проекции вида спереди (Front). Затем перейдите на панель Ribbon — Modeling — Align — Z.

Выравнивание рёбер по оси Z с помощью панели Ribbon

С оставшимися группами вершин проделайте всё то же самое самостоятельно, не трогая пока самые крайние группы вершин. Должно получиться так:

Выровненные рёбра

Следующим шагом нужно расположить эти группы вдоль линии бампера на чертеже. Для этого можно работать как с уровнем подобъектов вершин (Vertex), так и с рёбрами (Edge) — кому как больше нравится. Я предпочитаю использовать рёбра.

Поочередно выделяйте рёбра и перемещайте их вдоль внешней линии бампера. Напомню, что инструмент перемещения можно активировать по клавише W.

Перемещаем рёбра и выравниваем их относительно чертежа

Теперь требуется правильно сформировать поворотную секцию бампера и поработать над точной расстановкой рёбер относительно ключевых точек чертежа.

Красным прямоугольником выделен поворотный фрагмент бампера, который требует внимания

Выделите группу рёбер и перенесите их, как показано ниже.

Перенос рёбер ближе к поворотной секции

Затем выберите инструмент поворота (клавиша E) и поверните ребро перпендикулярно линии чертежа бампера.

Поворот выделенных рёбер перпендикулярно линии чертежа

Теперь те же манипуляции нужно проделать с остальными рёбрами. Старайтесь соблюдать примерно одинаковое расстояние между ними, чтобы сетка была более ровной.

Переносим и разворачиваем остальные рёбра

После всех этих действий должно получиться так:

Результат переноса и разворота рёбер

Пока что модель далека от идеала, но часть формы бампера мы построили. Идём дальше и поправим крайний профиль, который не стали трогать на предыдущем этапе.

Красным прямоугольником обозначены нужные вершины

Сделать это автоматически не получится. Поэтому руками аккуратно и не торопясь выравниваем вершины.

Выравниваем вершины так, чтобы рёбра располагались перпендикулярно линии чертежа

Не забываем проверять, чтобы линии по длинной стороне бампера были параллельны. Сейчас наблюдается такой момент:

Двойной красной линией обозначены параллельные рёбра, а одинарной — непараллельные

Рёбра, отмеченные двумя красными чёрточками, расположены параллельно, а там, где всего одна, их нужно поправить. Для этого переместим выделенные вершины чуть вверх и вправо.

Вариант перемещения вершин для запараллеливания нужных рёбер

Но выравнивать по одной не очень удобно и долго, поэтому мы будем сразу передвигать группы вершин.

Перемещаем группы вершин по периметру созданной плоскости, чтобы сделать рёбра максимально параллельными друг другу по длинной стороне

По сути, мы сейчас уменьшили плоскость по всему периметру с помощью вершин, так как у нас ещё не закрыта боковина бампера. Когда мы её закроем, окажется, что полигоны повело винтом.

Так получилось, потому что полка бампера сужается и речи о параллельности рёбер уже не идёт. Более того, нам придётся ещё пару раз пройтись по вершинам, чтобы привести модель в соответствие с чертежом.

Так выглядит промежуточный вариант бампера в окне проекции перспективы

Приемы моделирования объектов

Конструирование при помощи вершин

Основу сетки составляют с прямыми углами ячейки, каждая имеет собственные вершины, при их помощи происходит редактирование. Что бы создать другой объект, нужно произвести действия с точками вершин.

В качестве наглядного примера, применяется куб, после, активировав F9, не снимая выделения, переходят в режим редактирования вершин. Применив инструмент Move Tool, верхние точки перемещаются, так, что бы примитив принял иную форму. Если понадобится сберечь симметрию, удобней всего воспользоваться инструментом Scale Tool. Воспользовавшись разными инструментами можно достичь совсем уникальных результатов, к примеру, во время вращения, вершинах приобретут спиралевидную форму.

Кроме всего другого, для вершин есть необыкновенный метод стёсывания, дающий возможность создавать много граней из одной.

Применение рёбер в планировании

Такой способ схож с идущим до этого, редактирование рёбер выполняется по аналогичному принципу, что и с вершинами. В работе это работает так: в качестве базового элемента образовывается куб, при нажатии клавиш F10 активизируется редактор рёбер. Дальше, как пример вытягивается одна и разных граней ребра. После этого, возникнет добавочная поверхность, аналогичную операцию можно повторить и с соседними рёбрами.

Проектирование моделей при помощи полигонов

Сразу нужно отметить, это самый популярный метод создания трудных объёмных конструкций. В данном случае работа проходит с полигонами, производя разные действия разрешается менять форму, размер, создавать более непростые объекты. Как и в предыдущих примерах, редактирование выполняется по подобному сценарию. Активизировав кнопку F11, запускается редактирование полигонов, заранее выделив один из примитивов, можно работать с гранями, меняя их положение.

Дополнительно доступно много приёмов по преобразованию граней.

При разбивании грани на 2 половины, образовывается ещё одно ребро. После активации команды правка, курсор грызуны изменится, после чего необходимо отметить вершины нового ребра и выйти из режима правки, кликнув на пустом поле. После чего можно выполнять любые действия относительно новых рёбер.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий