Органические полимеры

Термопласты и их сокращенные обозначения

  • АБС – привитой сополимер акрилонитрила, стирола с бутадиеновым или бутадиен-стирольным каучуком.
  • АЦ – ацетат целлюлозы (ацетилцеллюлоза).
  • ЛПЭНП – линейный полиэтилен низкой плотности.
  • МС – сополимер стирола с метилметакрилатом.
  • МСН – сополимер стирола с метилметакрилатом и акрилонитрилом.
  • ПАН – полиакрилонитрил.
  • ПА – полиамиды.
  • ПАК – полиамидокислота.
  • ПАР – полиарилаты.
  • ПАС – полиалкилсульфон.
  • ПБТ – полибутилентерефталат.
  • ПВА – поливинилацетат.
  • ПВС – поливиниловый спирт.
  • ПВФ, фторопласт-1 – поливинилфторид.
  • ПВХ – поливинилхлорид.
  • ПВДФ, фторопласт-2 – поливинилиденфторид.
  • ПВДХ – поливинилиденхлорид.
  • ПИ – полиимиды.
  • ПК – поликарбонаты.
  • ПММА – полиметилметакрилат.
  • ПО – полиолефины.
  • ПП – полипропилен.
  • ПС – полистирол.
  • ППС – пенополистирол.
  • ПСФ – полисульфон.
  • ПТП – пентапласт.
  • ПТФЭ, фторопласт-4, фторлон-4, тефлон – политетрафторэтилен
  • ПТФХЭ, фторопласт-3. фторлон-3– политрифторхлорэтилен.
  • ПУ – полиуретаны.
  • ПФ – полиформальдегид.
  • ПФО – полифениленоксид.
  • ПЭ – полиэтилен.
  • ПЭИ – полиэфиримид.
  • ПЭВП, ПЭНД, ПНД – полиэтилен высокой плотности (низкого давления).
  • ПЭНП, ПЭВД, ПВД – полиэтилен низкой плотности (высокого давления).
  • ПЭО – полиэтиленоксид.
  • ПЭСД – полиэтилен среднего давления.
  • ПЭТФ – полиэтилентерефталат.
  • САМ – сополимер стирола с α-метилстиролом.
  • САН – сополимер стирола с акрилонитрилом.
  • СТД  – сополимер триоксана с диоксоланом.
  • СФД – сополимер формальдегида с диоксаланом.
  • ТАЦ – триацетат целлюлозы.
  • ФН – фенилон.
  • ХПЭ  – хлорированный полиэтилен.
  • ХСПЭ – хлорсульфированный полиэтилен.

Классификация

По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.

  • Органические полимеры.
  • Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения.
  • Неорганические полимеры. Они не содержат в повторяющемся звене связей C-C, но способны содержать органические радикалы, как боковые заместители.

Следует отметить, что в технике полимеры часто используются как компоненты композиционных материалов, например, стеклопластиков. Возможны композиционные материалы, все компоненты которых — полимеры (с разным составом и свойствами).

По форме макромолекул полимеры делят на линейные, разветвлённые (частный случай — звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.

Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей — молекул с разобщённым распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными. Полимеры с неполярными звеньями — неполярными, гидрофобными. Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными. Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.

Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных — высокомолекулярных (см. ).

Использование

Благодаря вышеназванным показателям, органические полимерные материалы имеют очень широкую сферу использования. Так, комбинирование высокопрочности с меньшей плотностью дает возможность получить материалы большой удельной прочности (ткани: кожа, шерсть, мех, хлопок и т. д.; пластмассы).

Кроме названных, из органических полимерных материалов выпускают другие материалы: резины, лакокрасочные материалы, клеи, электроизоляционные лаки, волокнистые и пленочные вещества, компаунды, связующие материалы (известь, цемент, глина). Их используют для промышленных и домашних потребностей.

Крахмал также считается органическим полимерным материалом

Впрочем органические полимерные материалы обладают значительным практическим минусом — старением. Под данным термином знают изменение их параметров и размеров в результате физико-химических преобразований, происходящих под действием самых разных факторов: истирания, нагрева, облучения и т. д. Старение происходит путем протекания конкретных реакций все зависит от вида материала и воздействующих факторов. Самой популярной среди них считается деструкция, подразумевающая формирование более низкомолекулярных веществ вследствие разрыва химической связи главной цепи. На основе причин деструкцию разделяют на термическую, химическую, механическую, фотохимическую.

Изыскание полимерных материалов начало формироваться к 40 гг. XX в. и сформировалось в качестве самостоятельной научной области в середине века. Это было связано с появлением знаний о роли данных веществ в органическом мире и выяснением возможностей их использования в промышленности.

При этом цепные полимерные материалы делали еще в начале Двадцатого столетия.

К середине столетия осилили выпуск электроизолирующих полимерных материалов (ПВХ и полистирола), гибкого стекла.

В начале второй половины века расширилось производство полимерных тканей за счёт возврата выпускавшихся прежде материалов и возникновения новых вариантов. Среди них — хлопок, шерсть, шелк, лавсан. В тот же период, благодаря использованию катализаторов, начали выпуск полимерного этилена и полипропилена при малом давлении и кристаллизующихся стереорегулярных вариантов. Чуть-чуть позднее осилили групповой выпуск очень знаменитых герметиков, пористых и адгезивных материалов, представленных полиуретанами, а еще элементоорганических полимерных материалов, выделяющихся от органических заменителей большей эластичностью и термической устойчивостью (полисилоксаны).

В 60 — 70 гг. были сделаны уникальные органические полимерные материалы с ароматическими элементами, характеризующиеся большой термической устойчивостью и прочностью.

Производство органических полимерных материалов активно развивается и в настоящий момент. Это вызвано возможностью применения недорогих материалов, например как уголь, попутные газы переработки нефти и добычи и сетевые газы, все вместе с водой и воздухом в виде начального сырья для многих из них.

Если вы нашли погрешность, пожалуйста, выдилите фрагмент текста и нажмите Ctrl+Enter.

Характерности

Рассматриваемые материалы состоят из мономеров, предоставленных повторяющимися фрагментами структуры из нескольких атомов. Они соединяются в трехмерные структуры либо цепи разветвленной или линейной формы вследствие поликонденсации либо полимеризации. Нередко в строении они четко проявлены.

Необходимо сказать, что термин «полимерные материалы» относится по большей части к органическим вариантам, хотя есть и неорганические соединения.

Принцип наименования рассматриваемых материалов состоит в присоединении приставки поли- к наименованию мономера.

Кроме полимерных молекул, большинство полимерных материалов включает другие вещества, работающие с целью улучшения практичных параметров путем вариации параметров. Они предоставлены:

  • стабилизаторами (предохраняют реакции старения);
  • наполнителями (включения разного фазового состояния, работающие чтобы придать нестандартных параметров);
  • водными ингибиторами (увеличивают устойчивость к морозам, уменьшают температуру переработки и совершенствуют пластичность);
  • смазками (дают возможность избежать прилипания элементов из металла применяемого в переработке оборудования);
  • красителями (служат для декора и для создания маркировок);
  • антипиренами (делают меньше возгораемость отдельных полимерных материалов);
  • фунгицидами, антисептическими средствами, инсектицидными препаратами (придают дезинфицирующие свойства и стойкость к влиянию насекомых и грибковой плесени).

В природной обстановке рассматриваемые материалы возникают в организмах.

Более того, есть близкие к полимерным материалам по зданию соединения, именуемые олигомерами. Их отличия заключаются в небольшом количестве звеньев и изменении начальных параметров при удалении или добавлении одного либо нескольких из них, тогда как параметры полимерных материалов при этом будут сохранены. Более того нет однозначного мнения относительно отношений между данными соединениями. Одни считают олигомеры низкомолекулярными вариантами полимерных материалов, прочие — индивидуальным типом соединений, не относящимся к высокомолекулярным.

Классификация полимеров

Есть довольно большое количество показателей, по которым синтетические полимерные материалы могут классифицироваться. При этом классификация затрагивает и основные эксплуатационные качества. Именно поэтому рассмотрим разновидности полимерных материалов подробнее.

Классификация проводится по агрегатному состоянию:

  1. Твердые. Практически все люди знакомы с полимерами, так как они используются при изготовлении корпусов бытовой техники и других предметов быты. Другое название этого материала – пластмасса. В твердой форме полимерный материал обладает достаточно высокой прочностью и пластичностью.
  2. Эластичные материалы. Высокая эластичность структуры получила применение при производстве резины, поролона, силикона и других подобных материалов. Большая часть встречается в строительстве в качестве изоляции, что также связано с основными эксплуатационными качествами.
  3. Жидкости. На основе полимеров производится достаточно большое количество самых различных жидких веществ, большая часть которых также применима в строительстве. Примером назовем краски, лаки, герметики и многое другое.

Жидкие полимеры — краски

Эластичные полимеры — резиновое покрытие

Различные виды полимерных материалов обладают разными эксплуатационными качествами. Именно поэтому следует рассматривать их особенности. Есть в продаже полимеры, которые до соединения находятся в жидком состоянии, но после вступления в реакцию становятся твердыми.

Классификация полимеров по происхождению:

  1. Искусственные вещества, характеризующиеся высокомолекулярной массой.
  2. Биополимеры, которые еще называют природными.
  3. Синтетические.

Большее распространение получили полимерные материалы синтетического происхождения, так как за счет смешивания самых различных веществ достигаются исключительные эксплуатационные качества. Искусственные полимеры сегодня встречаются практически в каждом доме.

Классификация синтетических материалов проводится также по особенностям молекулярной сетки:

  1. Линейные.
  2. Разветвленные.
  3. Пространственные.

Варианты структуры полимеров

Классификация проводится и по природе гетероатома:

  1. В главную цепь может входить атом кислорода. Подобное строение цепочки позволяет получить сложные и простые полиэфиры и перекиси.
  2. ВМС, которые характеризуются наличием атома серы в основной цепочке. За счет подобного строения получают политиоэфиры.
  3. Можно встретить и соединения, в главной цепочке которых есть атомы фосфора.
  4. В главную цепочку могут входить и атомы кислорода и с азотом. Наиболее распространенным примером подобного строения можно назвать полиуретаны.
  5. Полиамины и полиамиды – яркие представители полимерных материалов, которые в своей главной цепочке имеют атомы азота.

Кроме этого выделяют две большие группы полимерных материалов:

  1. Карбоцепные – вариант, который имеет основную цепочку макромолекулы ВМС с одним атомом углерода.
  2. Гетероцепные – структура, которая кроме атома углерода имеет и атомы других веществ.

Существует просто огромное количество разновидностей карбоцепных полимеров:

  1. Высокомолекулярные соединения, которые называют тефлоном.
  2. Полимерные спирты.
  3. Структуры с насыщенными главными цепочками.
  4. Цепочки с насыщенными основными связями, которые представлены полиэтиленом и полипропиленом. Отметим, что сегодня подобные разновидности полимеров получили просто огромное распространение, их применяют при производстве строительных материалов и других вещей.
  5. ВМС, которые получаются на основе переработки спиртов.
  6. Вещества, полученные при переработке карбоновой кислоты.
  7. Вещества, полученные на основе нитрилов.
  8. Материалы, которые были получены на основе ароматических углеводородов. Самым распространенным представителем этой группы является полистирол. Он получил широкое применение по причине высоких изоляционных качеств. Сегодня полистирол используют для изоляции жилых и нежилых помещений, транспортных средств и другой техники.

Полимеры

Вся приведенная выше информация определяет то, что существует просто огромное количество разновидностей полимерных материалов. Этот момент также определяет их широкое распространение, применение практически во всех отраслях промышленности и сферах деятельности человека.

Сополимеры

Полимеры, изготовленные из разных мономеров или химически связанных молекул разных полимеров, называют сополимерами. Например, ударопрочный полистирол является сополимером полистирол−полибутадиен.

Сополимеры различаются по строению, технологии изготовления и получаемым свойствам. На 2014 год созданы технологии:

  • статистические сополимеры, образованные цепочками, содержащими химические группы различной природы, получают путём полимеризации смеси нескольких исходных мономеров;
  • чередующиеся сополимеры характеризуются цепочками, в которых чередуются радикалы разных мономеров;
  • привитые сополимеры образуются путём прикрепления цепочек молекул второго мономера сбоку к макромолекулам, образованным из основного мономера;
  • гребнеобразными сополимерами называют привитые сополимеры с очень длинными боковыми цепочками;
  • блок-сополимеры построены из достаточно протяжённых цепочек (блоков) одного мономера, соединённых по концам с достаточно протяжёнными цепочками другого мономера.

Свойства сополимеров

Гребнеобразные сополимеры можно составить из материалов с разными свойствами, что даёт такому сополимеру принципиально новые свойства, например, жидкокристаллические.

В блок-сополимерах, составленных из компонент с разными свойствами, возникают суперрешетки, построенные из выделившихся в отдельную фазу блоков различной химической природы. Размеры блоков зависят от соотношения исходных мономеров. Так, хрупкому полистиролу добавляют устойчивость к растяжению до 40 % путём сополимеризации с 5−10 % полибутадиена, и получается ударопрочный полистирол, а при 19 % полистирола в полибутадиене материал демонстрирует каучукоподобное поведение.

Применение полимеров

Полимеры в нефтегазовой промышленности

Нефть и газ — это не просто источник топлива для большинства видов транспорта, но и сырье для химического производства. Именно из нефтепродуктов создают большинство видов полимеров.

Также полученные полимеры используются и в самом процессе добычи. Так, для увеличения производительности и очистки трубопроводов используют полиакриламид (ПАА) и его производные. Этот технический водорастворимый полимер помогает увеличивать максимальную пропускную способность нефтепровода и улучшает качество перекачиваемой нефти. Его же используют при ремонтных работах в скважинах.

В медицине

Медицинская сфера уже давно и активно использует изделия из полимеров. Среди них: штифты, одноразовые шприцы, инструменты для хирургии, контейнеры для плазмы и крови, контактные линзы, лабораторная посуда, хирургические нити, бахилы, протезы, искусственные органы и даже полимерные наногели для доставки лекарств.

Изучение возможностей полимеров на этом не останавливается. Так, студенты и профессоры Национального исследовательского технологического университета «МИСиС» в 2017 году решили усовершенствовать полиэтилен, чтобы использовать его в качестве замены костей, суставов и мышц. По мнению ученых, если доработать идею, то срок годности импланта из этого материала составит не менее 15 лет.

Экономика инноваций

Инновации против травм: новейшие достижения спортивной медицины

В автомобилестроении

Предприятия автомобильной промышленности используют не менее 100 видов полимерных материалов при производстве транспортных средств. Так, колпаки колес, приборные панели и некоторые части двигателя сделаны из полипропилена. Сиденья выполнены из полиуретана, коврики — из полиэтилена. В рычагах включения привода, шестернях, бензобаке, аккумуляторе, корпусах предохранителей есть полиамид. Проводку делают из поливинилхлорида (ПВХ). Этот термопластичный полимер винилхлорида знаком жителям всего мира. Из него обычно изготавливаются линолеум и натяжные потолки.

В строительстве

Не отстает от других и строительная сфера. Из полимеров создают электротехнические конструкции, кабели, провода, трубы, изоляционные эмали, лаки, пленки, сетки, ограждения и защитные покрытия. Более того, полимеры добавляются в состав железобетона и бетона. Это позволяет улучшить качество строительных материалов.

В пищевой промышленности

Полимеры в пищевой промышленности обязаны соответствовать определенным санитарно-гигиеническим требованиям. Они не должны влиять на органолептические свойства продуктов (вкус, цвет, запах), а также содержать токсичные компоненты. Полимеры используются не только в производстве оборудования для пищевой промышленности, но и в упаковочных материалах.

  • Оборудование. К примеру, в консервной и молочной промышленности звенья транспортерных лент изготовлены из полиамидов или полиэтилена высокой плотности. А для того, чтобы сырье и полуфабрикаты не прилипали к поверхности оборудования, на металлические конструкции наносят специальные полимерные покрытия.
  • Полимерная упаковка. Она позволяет сохранять миллионы тонн сельскохозяйственной продукции и продовольствия в магазинах. Так, одноразовые многослойные пленки сохраняют продукты на 20% дольше без добавления консервантов.

Полимеризация

Степень полимеризации — это число, показывающее сколько молекул мономера соединилось в макромолекулу. 

Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено:  (–CH2–CH2–)n

Характерные признаки полимеризации.

  1. В основе полимеризации лежит реакция присоединения.
  2. Полимеризация – цепная реакция, включает стадии инициирования, роста и обрыва цепи.
  3. Элементный состав (молекулярные формулы) мономера и полимера одинаков.

Катализаторами полимеризации могут быть: металлический натрий, пероксиды, кислород, металлоорганические соединения, комплексные соединения.

Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией.

Например, схема сополимеризации этилена с пропиленом:

Важнейшие синтетические полимеры

Изображение с портала

Важнейшие синтетические полимеры, получаемые реакцией полимеризации, и области их применения:

ПолимерМономерХарактеристики полимераПрименение полимера
Полиэтилен

(–СН2–СН2–)n

Этилен

СН2=СН2

Синтетический, линейный, термопластичный, химически стойкийУпаковка, тара
Полипропилен Пропилен

СН2=СН–СН3

Синтетический, линейный, термопластичный, химически стойкийТрубы, упаковка, ткань (нетканый материал)
Поливинилхлорид

Винилхлорид

СН2=СН–Сl

Синтетический линейный полимер, термопластичныйНатяжные потолки, окна, пленка, трубы, полы, изолента  и т.д
Полистирол

СтиролСинтетический линейный полимер, термопластичныйУпаковка, посуда, потолочные панели
Полиметилметакрилат

Метиловый эфир метакриловой кислоты

Синтетический линейный полимер, термопластичныйОчки, корпуса фар и светильников, душевые кабины, мебель и т.д
Тефлон (политетрафторэтилен)

Тетрафторэтилен Синтетический линейный полимер.

Термопластичный (t = 260-320C)

Обладает очень высокой химической стойкостью

Посуда, пластины утюгов, ленты и скотч, упаковка, изоляция
Искусственный каучук

Мономер: бутадиен-1,3 (дивинил)

Синтетический, линейный,  эластомер, содержит двойные связиРезина, изоляция, различные материалы, ракетное топливо
Натуральный каучук

Мономер: 2-метилбутадиен-1,3

Природный, линейный, эластомер, содержит двойные связиРезина, изоляция, различные материалы, ракетное топливо
Хлоропреновый каучук

Мономер: 2-хлорбутадиен-1,3

Синтетический, линейный, эластомер, содержит двойные связиРезина, изоляция, различные материалы, ракетное топливо
Бутадиен-стирольный каучук

Мономеры: бутадиен-1,3 и стирол

Синтетический, эластомерРезина, изоляция, различные материалы, ракетное топливо
Полиакрилонитрил АкрилонитрилСинтетический, линейныйВолокна, пластмассы

Химические свойства полимеров

Химические свойства полимеров отличаются от таковых у низкомолекулярных веществ. Это объясняется размером молекулы, наличием различных функциональных группировок в ее составе, общим запасом энергии активации.

В целом можно выделить несколько основных типов реакций, характерных для полимеров:

  1. Реакции, которые будут определяться функциональной группой. То есть если в состав полимера входит группа ОН, характерная для спиртов, значит, и реакции, в которые они будут вступать, будут идентичны таковым у спиртов (дегидратация, окисление, восстановление, дегидрирование и так далее).
  2. Взаимодействие с НМС (низкомолекулярными соединениями).
  3. Реакции полимеров между собой с образованием сшитых сетей макромолекул (сетчатые полимеры, разветвленные).
  4. Реакции между функциональными группировками в пределах одной макромолекулы полимера.
  5. Распад макромолекулы на мономеры (деструкция цепи).

Все перечисленные реакции имеют в практике большое значение для получения полимеров с заранее заданными и удобными человеку свойствами. Химия полимеров позволяет создавать термоустойчивые, кислотно и щелочеупорные материалы, обладающие при этом достаточной эластичностью и стабильностью.

Интересные факты о полимерах

Полимеры имеют богатую историю и широкую область практического применения. Вот лишь некоторые интересные факты о полимерах и их использовании:

  • Полимеры существуют уже тысячи лет, но понять их химическую структуру удалось только в начале 20 века. Термин «полимер» был придуман британским химиком в конце 1800-х годов.
  • Синтетические полимеры, такие как пластмассы и синтетический каучук, произвели революцию в современном обществе, предложив дешевые и прочные материалы для широкого спектра продуктов.
  • В настоящее время разрабатываются биоразлагаемые полимеры, такие как полимолочная кислота, для снижения воздействия пластиковых отходов на окружающую среду.
  • Полимеры также используются в медицине, в том числе в качестве шовного материала, контактных линз и систем доставки лекарств.
  • Полимеры являются важными компонентами многих современных технологий, включая электронику и возобновляемые источники энергии. Например, фотоэлементы в солнечных панелях изготавливаются из полимерных материалов.
  • Некоторые полимеры, такие как шелк паука и коллаген, встречаются в природе и обладают уникальными механическими свойствами, которые делают их полезными в различных отраслях промышленности.
  • Изучение полимеров известно как наука о полимерах и включает изучение как синтетических, так и встречающихся в природе полимеров, их свойств и областей применения. Область продолжает расти и развиваться, что приводит к разработке новых и инновационных применений полимеров.

Мы продолжим следить за развитием событий.

Узнать больше о полимерах и полимерных материалах, прочитав свежие новости, изучив прочие материалы энциклопедии и библиотеки на портале MPlast.by вы можете на персональной странице темы – полимеры.

Состояние полимеров

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации – регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах. возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимеров менее выражены, чем в кристаллических.

Незакристаллизованные полимеры могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами, с высокой – пластиками.

В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеров. могут меняться в очень широких пределах. Так, 1,4-цис-полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 град.С – эластичный материал, который при температуре – 60 град.С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жёстких цепей, при температуре около 20 град.С – твёрдый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100 град.С.

Целлюлоза – полимер с очень жёсткими цепями, соединёнными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры её разложения. Большие различия в свойствах П. могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол – кристаллическое вещество с температурой плавления около 235 град.С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80 град.С.

Что такое полимеры

У слова «полимер» греческое происхождение: pollá (многие) и méros (часть). Полимеры — это вещества, которые состоят из множества мономеров (структурные звенья). По строению полимеры бывают линейными, разветвленными или сетевыми. Количество мономерных звеньев и молекулярная масса каждого из них влияют на свойства будущего материала.

Название синтетических полимеров, используемых в статье:

  • Полиэтилен — термопластичный полимер этилена.
  • Полиуретан — сырьем для этого полимера служит полиол. Его получают из сырой нефти.
  • Полиамид — получается в результате химической переработки угля, газа и нефти.
  • Поливинилхлорид (ПВХ) — синтетический термопластик, который состоит из хлора и этилена.
  • Бакелит — продукт реакции фенола и формальдегида под давлением при высоких температурах.
  • Полистирол — материал, который получают в результате полимеризации стирола.
  • Полиметилметакрилат (оргстекло) — полимер, который пропускает свет, и внешне похож на стекло.
  • Полиэфирное волокно — используется в качестве наполнителя в игрушках, одеялах, подушках, мебели.
  • Полипропилен — твердое вещество, которое получается в результате полимеризации пропилена (бесцветный газ).
  • Полиамиды — в эту группу пластмасс входят найлон, капрон, анид.
  • Тефлон — полимер, который содержит углерод и фтор (политетрафторэтилен).
  • Полимерные композиты — изготавливаются из двух и более компонентов. В качестве основного (матрицы) выступает полимер.
  • Полиакриламид (ПАА) — полимер белого цвета без запаха. Растворяется в воде, в ледяной уксусной и молочной кислотах и глицерине, но не растворяется в этаноле, метаноле и ацетоне.

История

Исследование полимеров начало развиваться к 40 гг. XX в. и сформировалось в качестве самостоятельной научной области в середине столетия. Это было связано с развитием знаний о роли данных веществ в органическом мире и выяснением возможностей их применения в промышленности. При этом цепные полимеры производили еще в начале XX столетия. К середине века освоили выпуск электроизолирующих полимеров (поливинилхлорида и полистирола), плексигласа. В начале второй половины столетия расширилось производство полимерных тканей за счет возврата выпускавшихся прежде материалов и появления новых вариантов. Среди них — хлопок, шерсть, шелк, лавсан. В тот же период, благодаря применению катализаторов, начали выпуск полиэтилена и полипропилена при малом давлении и кристаллизующихся стереорегулярных вариантов. Немного позже освоили массовый выпуск самых известных герметиков, пористых и адгезивных материалов, представленных полиуретанами, а также элементоорганических полимеров, отличающихся от органических аналогов большей эластичностью и термостойкостью (полисилоксаны). В 60 — 70 гг. были созданы уникальные органические полимеры с ароматическими компонентами, характеризующиеся высокой термостойкостью и прочностью.

 Производство органических полимеров интенсивно развивается и сейчас. Это обусловлено возможностью использования дешевых материалов, таких как уголь, попутные газы нефтепереработки и добычи и природные газы, в совокупности с водой и воздухом в виде исходного сырья для большинства из них.

Типы полимеров

По химическому составу различают:

  • органические;
  • элементоорганические;
  • неорганические.

Органические полимеры:

  • природные;
  • искусственные (модифицированные);
  • синтетические.

Природные полимеры

Такие полимеры можно найти в природе. Человек не участвует в производстве таких полимеров. В качестве примера можно привести белки, крахмал, натуральный каучук, хлопок, шерсть и др.

Искусственные полимеры

Чтобы получить такие полимеры, человек проводит химические опыты. Например, чтобы получить модифицированный полимер, который затем будет применён при производстве красок, химики добавляют в раствор стирола в толуоле или ксилоле льняное или касторовое масло и нагревают его.

Пример такого полимера — целлюлоза.

Синтетические полимеры

Произвести такие полимеры можно с помощью химического синтеза (т. е. химическим путём). В синтезе участвуют высокомолекулярные органические продукты. Например, чтобы получить синтетический полимер лавсан нужно поликонденсировать (т. е. провести химический опыт) терефталевую кислоту и этиленгликоль.

Пример — капрон, нейлон, полиэтилен, полипропилен, полистирол, фенолформальдегидные смолы.

Элементоорганические полимеры

Содержат атомы других химических элементов, например кремния, алюминия, титана и др. Выделяют:

  • термостойкие полимеры;
  • полимеры с высокой электропроводностью и полупроводниковыми свойствами;
  • вещества с высокой твёрдостью и эластичностью;
  • биологические активные полимеры и др.

Химики получают такие полимеры при взаимодействии определённых органических веществ с солями или заменяя некоторые атомы углерода в молекулах на другие составляющие. Пример — полисилоксаны, полититаноксаны и др.

Неорганические полимеры

Полимеры, молекулы которых построены из неорганических боковых цепей (или неорганических радикалов). Неорганические полимеры можно обнаружить в составе земной коры.

Полимеры могут отличаться составом мономерных звеньев. Мономерное звено — это составная часть макромолекулы полимера. Различают:

  • гомополимеры;
  • гетерополимеры (или сополимеры).

Гомополимеры

Это такие полимеры, у которых одинаковые мономерные звенья. Например: полихлорвинил, поливинилацетат и полистирол.

Гетерополимеры

Это полимеры, которые имеют различные мономерные звенья. Например: сополимер хлористого винила с винилацетатом, сополимер стирола с бутадиеном.

Полимеры могут также подразделяются также на карбоцепные (или гомоцепные) и гетероцепные полимеры.

Гетероцепные полимеры

Главные цепи макромолекул таких полимеров включают не только атомы углерода, но ещё и атомы кислорода, азота и серы. Например: простые эфиры (например, полиэтиленгликоль), сложные эфиры (глифталевые смолы, полипептиды (белки) и др.).

Полимеры также могут подразделяться в зависимости от расположения мономерных цепей в пространстве. Различают:

  • стереорегулярные (полимеры с линейной структурой);
  • нестереорегулярные (или атактические).

Строение макромолекул полимеров может быть различным. Таким образом, есть полимеры:

  • линейные;
  • разветвлённые;
  • лестничные;
  • трёхмерные сшитые (сетчатые, пространственные).

Полимеры можно получить разными способами:

  • если полимер получают с помощью поликонденсации, то такой полимер называют поликонденсационным (или реактопластами);
  • если с помощью полимеризации — речь идёт о полимеризационном полимере.

В зависимости от реакции полимера на нагревание выделяют:

  • термопластичные (полиэтилен, поливинилхлорид, полистирол);
  • термореактивные полимеры (полиэфиры, эпоксидные, меламиновые и фенольные смолы).

Полипептиды

Полипептиды представляют собой цепочки пептидов, а пептиды – цепочки аминокислот. В живых организмах идентифицировано 20 типов аминокислот, комбинации которых составляют основу белков. Некоторые примеры полипептидов:

  • Глобулин: растворимый белок, содержащийся в основном в крови, яйцах и молоке.
  • Инсулин: полипептидный гормон, который естественным образом вырабатывается поджелудочной железой в качестве регулятора уровня глюкозы в крови.
  • Протеин: цепь полипептидов, образующихся в процессе синтеза или трансляции белков, которые, как правило, образуются в рибосомах с информацией ДНК, переносимой информационной РНК.

Что такое неорганические полимеры

Более распространены неорганические полимеры природного происхождения, содержащиеся в земной коре

Чаще всего это продукт синтеза элементов III-VI группы периодической системы Менделеева. Неорганическими они называются потому, что в основе лежат неорганические главные цепи и не имеют органические боковые радикалы. Связи появляются в результате одного из двух процессов — поликонденсация или полимеризация.

Говоря обобщенно, неорганические полимеры – это искусственно синтезированные материалы, которые пришли на смену природным. При этом создатели преследовали цель сделать их дешевле. Современные полимеры превосходят имеющиеся природные аналоги по своим характеристикам. Были созданы материалы, которыми природа не обладает вовсе. Это обеспечивает их популярность и разнообразие.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий