Легирование стали

Использование легированной стали

Сегодня практически невозможно назвать хоть одну из сфер деятельности человека, где не нашлось бы места сплаву с такими характеристиками. Из конструкционной и инструментальной сталей выпускаются почти все инструменты, например, фрезы, резцы, штампы и т. д. Нержавеющие легированные стали также применяются для выпуска бытовых изделий, например, при производстве посуды, корпусов бытовой техники. Также легированная сталь отличается множеством других качеств, которые гарантируют ей широчайшее применение. Она повышает срок службы самых разных изделий, обеспечивает их надежность и даже позволяет экономить. Ведь чем дольше эксплуатируется та или иная вещь, тем реже приходится приобретать новую. Кстати, изделия или их компоненты из легированного материала можно встретить не только в строительстве или машиностроении, но и у хирургов в руках, например, скальпель, на производстве трубопроводов. Если изготовить из него нож, то часто точить его не придется. Сфера использования легированных сталей находится в прямой зависимости от способа термообработки, которому она подверглась. Прежде была изучена классификация этого материала по назначению согласно ГОСТ: инструментальные, конструкционные и стали с особыми качествами. Низколегированные стали хорошо поддаются свариванию, поэтому из них чаще всего делают трубы и другие конструкции. Легированная инструментальная сталь отлично подходит как сырье для изделий, которые будут работать под давлением.

Нержавейка, содержащая много хрома, применяется для выпуска трубных изделий. Трубы, изготовленные из такого материала, отличаются повышенной стойкостью к ржавлению, и еще, они прекрасно противостоят скачкам температур, в особенности, высоких.

Классификация легированных сталей

Есть три степени легирования, согласно которым меняется процентное содержание добавочных веществ. Отсюда материал может быть:

низколегированным – до 2,5% примесей в составе;

среднелегированным – до 10%;

высоколегированным – до 50% добавок.

Различается также молекулярная структура, согласно ей все сплавы классифицируют на:

мартенситные – с полностью такой зернистостью;

аустенитные, а также различные виды комбинированных сталей.

Наиболее часто в качестве примеси используется углерод, он отвечает за повышенную прочность и стойкость к ударам. В связи с этим классифицируют сплавы:

низкоуглеродистые – до 0,25% содержания;

среднеуглеродистые – до 0,65%;

высокоуглеродистые – более 0,65%.

Структура также подразумевает деление на следующие классы:

доэвтектоидные – в сплаве есть участки феррита;

эвтектоидные – в основе перлит;

ледебуритные или заэвтектоидные – с первичными/вторичными карбидами.

Также мы уже отмечали, что по назначению все делятся на:

конструкционные – они, в свою очередь, подразделяются на строительные и машиностроительные;

инструментальные – для создания инструментов металлообработки;

с особыми свойствами, в том числе устойчивые к температурным перепадам, огнестойкие и другие.

жаропрочные – в них добавляют хром, ванадий, молибден, они используются в сфере энергетики, а также для других отраслей с высокими температурными показателями;

улучшаемые – их дополнительно подвергают термообработке, обычно закалке, они отличаются повышенной прочностью и чувствительностью к концентрации напряжения;

цементуемые – они сперва проходят цементацию, а уже после этого закалку, отлично подходят для производства шестерен, валов и прочих элементов, для которых важна износостойкость;

быстрорежущие – очень большая твердость и красностойкость до высокой температурной границы;

нержавеющие – имеют покрытие из оксидной пленки, предотвращающее ржавление;

с улучшенными магнитными или электрическими качествами.

Если более подробно классифицировать легированные стали строительного назначения, то различают:

массовые – применяются фактически всюду;

судостроительные – очень устойчивы ко хрупкому разрушению;

для горячего водоснабжения и пара – относится к жаропрочным;

низкоопущенные – активно используются в самолетостроении и пр.

Кроме того, все сплавы можно классифицировать по основной примеси, а также делить на двухкомпонентные, трехкомпонентные и так далее по конкретной рецептуре.

2 Различные способы

Первый способ – ионное легирование (ионная имплантация) Такой способ позволит осуществлять контроль приборов с максимальной точностью. Эта технология применяется в основном для легирования полупроводников. Ионное легирование условно можно разделить на 2 этапа: загонка легирующих атомов в материал и активация загнанной в материал добавки. Проконтролировать процесс можно дозировкой (кол-вом добавки), энергей (от нее зависит глубина вхождения добавки), температурой (от нее зависит распределение добавки в материале), а также временем протекания процесса.

Следующим идет нейтронно-трансмутационный процесс легирования. Он тоже применяется для легирования полупроводников. Принципы технологического процесса следующие: добавки не вводятся, а “мутируют” из исходного материала при протекании ядерных реакций, которые вызываются при облучении материала нейтронами. В результате выходит монокристаллический материал, в котором атомы распределены равномерно. Подобный способ впервые был применен на территории СССР в 1980 году. Отечественными учеными была доказана возможность легирования силиция в больших количествах на энергоблоках АЭС, при этом не снижалась выработка электроэнергии и не ухудшались параметры безопасности. С 1988 по 2004 года технология была внедрена почти на всех АЭС России и усовершенствована, что позволило увеличить диаметр слитков Si до 85 мм. На данный момент Россия лидирует в этой технологии.

Другим способом легирования полупроводников является термодиффузионный способ. Он условно разделяется на несколько этапов: осаждение добавки, отжиг (при котором происходит загонка добавки в материал), удаление добавки.

Процесс легирования стали

Электроискровое легирование происходит при обработке готовых изделий из металла при использовании дуговых разрядов, при которых происходит перенос добавки с электрода на поверхность изделия. Часто применяют для форм и других изделий, которые используются в цветной и черной металлургии (в процессе разливки), поскольку обработанные детали и конструкции устойчивы к высокой температуре. Электроискровое легирование применяется только для специальных изделий и механизмов.

А вот в металлургии специальное легирование начало использоваться не так давно – примерно с начала 20 века. Основными причинами этого являются технологические сложности, связанные с процессом и с тем, что частично происходило природное обогащение компонентами (так, используемое метеоритное железо имело в своем составе никель, а на рудниках – свои примеси серы, кремния и т.д.). Некоторые месторождения (например, на юге Японии) имели в составе руды и молибден, поэтому японское оружие считалось очень надежным и прочным

В Европе уделили особое внимание процессу легирования во второй половине 19 века, первый лабораторный образец легированной стали был получен в 1858 году, первая пробная партия получена в 1871-м, однако технологически не подготовленное оборудование не позволяло быстро внедрить эту технологию. Поэтому массово легировать сталь стали только к 1890-м годам

Назначение

Высокие эксплуатационные характеристики сталей с легирующими добавками обеспечивают их использование в следующих областях:

  • Устройство трубопроводных систем различного назначения. Применение стальных сплавов с добавками хрома, кремния и марганца обеспечивает высокую прочность конструкций и изделий, упругость, эффективное сопротивление упругим деформациям.
  • Изготовление сварных конструкций в вагоно-, станко-, автомобилестроении, тяжелом машиностроении. Из этих сплавов производят корпусы железнодорожных и трамвайных вагонов, сельскохозяйственных машин.
  • Нефтяное аппаратостроение. Применение низколегированной стали в этой области позволяет сэкономить металл, снизить массу конструкций, трудозатраты на изготовление и монтаж, а следовательно, себестоимость.
  • Строительство инженерных сооружений, которые эксплуатируются при переменных динамических нагрузках, в условиях суточных и сезонных значительных температурных перепадов.
  • Производство паровых турбин. Для этих целей используют теплоустойчивые марки, легированные молибденом, хромом+молибденом, хромом+молибденом+ванадием. Такие изделия также устойчивы к значительным пневмонагрузкам.

Наиболее распространенная марка – 09Г2С – и ее аналоги используются при производстве проката, способного работать в широком температурном интервале – от -70°C до +450°C. Из такого металлопроката изготавливают паровые котлы, емкости и аппараты, эксплуатируемые при высоком давлении, сварные конструкции ответственного назначения, используемые в химической, нефтяной индустрии, судостроении. Марку 09Г2С применяют при производстве горячекатаных бесшовных труб, электросварных труб значительных диаметров, контейнеров значительной грузоподъемности.

Технология производства легированных сталей

Легирование – процесс доведения стали до требуемого химического состава. Это делается для улучшения физических и химических свойств стали. Процесс проводится после получения и снятия шлака. Отбирают металл на пробу, т.е. определяют процент содержания углерода, марганца и т.д. Затем выбирается способ легирования.

Выделяют поверхностное и объемное легирование. В первом случае легированию подвергаются лишь верхние слои металла, 1-2 мм. Такой способ часто заменяет неэффективное напыление и призван создать определенные свойства только для поверхности металла.

При объемном легировании добавки проникают во все слои металла.

По процентному соотношению легирующих добавок сталь подразделяют на: низколегированную – 5–10%; среднелегированную – 10%; высоколегированную – более 10%. Какие элементы на что влияют: марганец и кремний – раскислители; так же марганец связывает имеющуюся в стали серу и понижает красноломкость металла; кремний – повышает предел текучести металла;

Обозначения легирующих элементов:

редкоземельные металлы (Ч).

Так же после маркировки буквой может стоять цифра. Она указывает на содержание легирующего элемента в процентах. Если цифра отсутствует, то содержание легирующего элемента составляет 0,8-1,5 %, за исключением молибдена и ванадия (в сталях обычно до 0.2-0.3 %).

Сплавы, полученные по такой технологии, широко используются в машиностроительной отрасли, где нужно получить детали с хорошей прокаливаемостью. Поэтому нужно не перестараться с введением легирующих компонентов. Их излишек вызывает снижение пластичности, повышение хрупкости и снижение порога хладноломкости.

На металлургических заводах для доставки сырья часто используется лента транспортерная . Это позволяет повысить производительность труда и автоматизировать производственные процессы.

Процесс легирования проходит в различных металлургических печах: индукционных, вакуумно-дуговых, плазменных и т.д.). Помимо печей выделают:

механическое легирование; восстановление; электролиз; плазмохимическая реакция.

Механическое легирование заключается в процессе вбивания легирующих компонентов в порошковый металл; сам процесс проходит в специальном барабане под названием «аттритор» – барабанах, в центре которых находится вал с кулачками.

Источник

Дополнительная классификация

Легированные конструкционные сплавы подходят для изготовления деталей машин и механизмов в машиностроительной отрасли – производят крупногабаритные детали, которые закаляют и подвергают высокому отпуску. Большая часть легирующих добавок в стали повышают прокаливаемость. Внедрение добавок должно быть достаточным, но не чрезмерным. Большая степень легирования может вызвать:

  • снижение пластических свойств;
  • развитие отпускной хрупкости;
  • снижение порога хладноломкости.

Исключение – никель, он смещает порог хладноломкости в область низких температур, поэтому для машин, работающих в условиях Севера, механизмы изготавливают из никельсодержащих сталей. Пружинная легированная сталь содержит 0,5–0,7% углерода, а в качестве добавок вводят хром, молибден и вольфрам. Такой состав должен обеспечивать высокое сопротивление малым пластическим деформациям и высокой усталостной стойкости.

Шарикоподшипниковые – относят к заэвтектоидным – углерод около 1% с дополнительным легированием металла хромом (1,3–1,65%). В теплостойких подшипниках хром увеличивают до 5%. К подшипниковым – предъявляют особые требования по металлургической чистоте. Применение рафинирующих переплавов, вакуумные способы переплавки, обработка синтетическими шлаками позволяют уменьшить долю и размер неметаллических включений, тем самым повышают сопротивление контактной усталости.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ электроэрозионного легирования поверхностей стальных деталей, включающий нанесение на поверхность антифрикционного покрытия из легкоплавкого металла и износостойкого, высокотвердого покрытия тугоплавкими металлами или их карбидами, отличающийся тем, что сначала наносят слой покрытия из меди на режимах, при которых ток короткого замыкания Jкз=0,5-0,6 A, напряжение холостого хода Uхх=56,1 В и емкость накопительного конденсатора С=20 мкФ, а затем слой покрытия из износостойкого высокотвердого металла или его карбида, выбираемого из группы Ti, V, W, на режимах, при которых ток короткого замыкания J кз=2,0-2,2 А, напряжение холостого хода Uхх=68,7 В и емкость накопительного конденсатора С=300 мкФ.

Основные цели легирования

Слово «легирование» происходит от немецкого «legieren» (связывать, соединять). Положительное воздействие легирующих компонентов на свойства стали связано с обеспечиванием протекания двух физико-химических процессов.

Процесс №1

Образование термодинамических устойчивых растворов замещения, сопровождающееся замещением части атомов (ионов) железа в его кристаллической решётке (ионами) легирующего элемента. Это ведёт к искажению кристаллической решётки железа, поскольку радиусы ионов (катионов) легирующих элементов отличаются от радиуса катионов железа, что повышает твёрдость и прочность железа с сохранением его пластичности.

Процесс №2

Возникновение прочных и практически нерастворимых в жидком железе химических соединений между введёнными в расплавленный металл легирующими добавками и растворёнными в нём неметаллами (кислород, азот, сера, углерод и др.).

Результатами образования таких соединений являются:

  • снижение остаточного содержания в расплавленном металле растворенных неметаллов, ухудшающих его качество;
  • уменьшение общего объёма вредных примесей (растворённых и в виде неметаллических включений) в стали.

А также происходит выделение (выпадение) из жидкого металла таких мелких неметаллических включений, которые служат центрами кристаллизации и приводят к получению мелкозернистой первичной и вторичной структуры стали. Благодаря этому она имеет лучшую пластичность, малую анизотропность свойств после прокатки и т. д. Выделяющиеся во время кристаллизации мелкие неметаллические включения обладают склонностью скапливаться на поверхности растущих кристаллов, понижая скорость роста граней, а это, в свою очередь, уменьшает зернистость стали.

Роль легирующих элементов в электродном покрытии

Электродов на рынке огромное количество, покрытия отличаются. Их задача — предотвратить окисление из-за взаимодействия с кислородом и водородом, ускорить ионизацию. У каждого материала покрытия индивидуальные свойства.

Этапы производства электродов:

  • подготовка стержня из проволоки;

  • подготовка обмазки;

  • нанесение обмазки на стержень;

  • сушка, прокаливание.

Готовый электрод — это стальной стержень с обмазкой, предотвращающей образование пор или трещин, активирующей кристаллизацию, очищающей сварную ванну от примесей.

Элементы обмазки:

  • образующие газ (мрамор, целлюлоза, крахмал);

  • стабилизирующие (соединения калия, обеспечивающие быстрое зажигание);

  • раскисляющие (хром, алюминий, молибден, удаляющие кислород);

  • образующие шлаки (марганец, ильменит, шпаты);

  • легирующие (хром, марганец, кремний, титан);

  • формующие (каолин, бетонит, повышающие эластичность);

  • красящие (для визуального определения маркировки).

Существует множество видов покрытий для электродов, каждый предназначен для выполнения определенных типов работ с конкретным металлом

Важно точно определить назначение, малейшая ошибка приводит к образованию трещин, ухудшению эксплуатационных характеристик.

Related Posts via Categories

  • Бесшовные трубы ГОСТ 8734-75 – сортамент и все характеристики и особенности
  • Температура плавления и использования нержавеющей стали – что важнее?
  • Плотность нержавеющей стали – отечественные марки и стандарт AISI
  • Марки коррозионностойких сталей – Как улучшается прочность и свойства металла?
  • Легированные конструкционные стали – специальные сплавы для особых случаев
  • Состав нержавеющей стали – какие типы антикоррозийных сплавов существуют
  • Нержавеющая сталь – проведем классификацию без избытка цифр
  • Углеродистая сталь – свойства и сферы применения
  • Низколегированные стали – востребованные современной промышленностью сплавы
  • Термообработка нержавеющей стали – особенности сложного процесса!

Легирование стали: в чем заключается цель, процесс, способы

В зависимости от назначения материала и специфических условий эксплуатации, бывают разные способы изготовления стальных элементов. В статье расскажем, в чем заключается процесс легирования металлов и сталей, с какой целью проводят, что используют для процедуры.

Интересно, что легированные инструменты для резки были созданы еще в 19 веке ученым Мюшеттом вместе с созданием металлорежущих станков. А Роберт Гадфильд уже в 20 веке поставил изготовление на промышленные рельсы, теперь такой состав применяется повсеместно. При этом марка, разработанная в то время, практически не потерпела изменений в рецептуре. Делаются только небольшие изменения, которые подготовлены специально для особых назначений, например, устойчивость к экстремально низким или высоким температурам.

Легированная сталь – это сплав, который содержит большое количество примесей, увеличивающих прочность, пластичность, коррозионную устойчивость и прочие свойства. Она активно применяется для изготовления инструментов и полупроводников, поскольку учитываются не только механические характеристики, но и токопроводящие.

Важно при создании не только то, какие вещества добавляются в качестве примесей (алюминий, никель, хром и др), но и технология производства. В зависимости от преобладающей легирующей добавки марки имеют названия – хромистая сталь, хромоникелевая, хромованадиевая и пр

Использование стальных конструкций и деталей происходит практически во всех производственных сферах – от обычного бытового строительства до нефтяной и металлургической отраслей.

Что такое легированная сталь

Это углеродистая сталь для улучшения технологических свойств которой введены специальные легирующие элементы. Процент добавок в составе невелик, но даже при незначительной концентрации, физические свойства металла улучшаются в несколько раз.

В зависимости от вида используемых добавок при производстве стали металл приобретает следующие свойства:

  • неподверженность коррозии;
  • упругость;
  • тугоплавкость;
  • прочность.

Для придания перечисленных качеств в состав добавляют следующие металлы:

  • хром;
  • никель;
  • молибден;
  • вольфрам;
  • медь.

Зачастую в углеродистую сталь достаточно добавить 1 — 3% легирующих элементов для придания ей необходимых свойств и качеств.

Преимущества

Все легированные стали обладают рядом ценных преимуществ, среди которых стоит выделить:

  • повышенную стойкость к деформациям пластинчатого характера;
  • высокую твердость;
  • стойкость к хладоломкости и вязкости;
  • технологические качества на высоком уровне.

Помимо этого, такая сталь не склона к короблению или появлению прочих дефектов в ходе процесса закалки.

Недостатки

При всех очевидных достоинствах, которыми обладают легированные инструментальные стали либо прочие, недостатки тоже присутствуют:

  • Для них характерна дендритная ликвация, но, к счастью, этого можно избежать проведением диффузионного отжига.
  • Высоколегированные марки могут содержать остаточный аустенит, из-за чего снижается сопротивляемость к усталости и твердости материала.
  • Не исключается появление флокенов – так называемых трещин в структуре стали. Данного дефекта можно избежать путем замедления охлаждения металла, а также снижения содержания водорода в ходе выплавки.

В зависимости от разновидности термической обработки позволяют избежать появления большинства дефектов. В результате чего сталь приобретает необходимые, порой уникальные качества.

Углеродистые стали

Углерод, усиливая твёрдость, одновременно делает сплав более хрупким. Процентное содержание элемента отражается в маркировке — по ней можно определить, какой материал перед вами. Учтите, две первые цифры отражают наличие сотых долей процента элемента, одна – в десятых долей. Если углерода до 0,25 %, то сталь низкоуглеродистая, а следовательно – недорогая, легко сваривается. Если от 0,3 до 0,55 %, то сплав среднеуглеродистый, такие активно применяются в машиностроении. Количество элемента в диапазоне 0,6-2 %, показывает, что материал высокоуглеродистый, потому свариваемость и жидкотекучесть его низка, но твёрдость высокая.

Структура низкоуглеродистых сплавов обеспечивает пластичность, но относительно малую прочность материала. Увеличения содержания углерода приводит к потере пластичности, но заметно усиливает прочность. Так, высокоуглеродистая сталь — очень твёрдый, прочный сплав, для которого применение сварки стараются по возможности избегать. Из него выпускают проволоку, подшипники, пружины, штампованные детали.

Это интересно: Жаропрочная сталь — марки, виды и состав жаростойких сталей и сплавов

Поделитесь в социальных сетях:FacebookX
Напишите комментарий