Ледебурит

Цементит: формы существования

Так называют соединение углерода и железа. Это компонент чугуна и некоторых сталей. В него входит 6,67% углерода.

В его кристалл входит несколько октаэдров, они расположены друг по отношению к другу с некоторым углом. Внутри каждого из них расположен атом углерода. В результате такого построения получается следующая картина – один атом вступает в связь с несколькими атомами железа, а железо в свою очередь связано с тремя атомами этого элемента.

Кристаллическая решетка цементита

У этого вещества имеются все свойства, которые присущи металлам – электропроводность, своеобразным блеском, высокая теплопроводность. То есть, смесь железа и углерода, ведет себя как металл. Этот материал обладает определенной хрупкостью. Большая часть его свойств определена сложным строением кристаллической решетки.

Этот материал плавится при 1600 градусах Цельсия. Но на этот счет существует несколько мнений, одни исследователи считают, что его температура плавления лежит в диапазоне от 1200 до 1450, другие определяют, что верхний уровень равен 1300 °С.

Первичный цементит

Металлурги разделяют три типа этого вещества – первичный, вторичный, третичный.

Диаграмма железо-цементит

Первичный, получается из жидкости при закалке сплавов, которые содержат в себе 5,5% углерода. Первичный имеет форму в виде крупных пластин.

Вторичный

Этот элемент получается из аустенита при охлаждении последнего. На диаграмме этот процесс этот процесс можно видеть по диаграмме Fe – C. Цементит представлен в виде сетки, размещенной по границам зерен.

Третичный

Этот тип, является производным от феррита. Он имеет форму иголок.

В металлургии существуют и другие формы цементита, например, цементит Стеда и пр.

Другие структурные составляющие в системе железо углерод

Перлит

Перлит – это механическая смесь, которая состоит из феррита и цементита. Ледебурит представляет собой переменный раствор.

Перлит

При температуре от 1130 и до 723 °С в его состав входят аустенит и цементит. При более низких температурах он состоит из аустенит заменяет феррит.

Структура и свойства

Основная фаза, инициирующая зарождение ледебурита — цементит. На пластинке цементита, зародившейся в эвтектической жидкости, разрастается плоский дендрит аустенита. Далее идет сравнительно быстрый парный рост взаимно проросших кристаллов обеих фаз. Каждая из фаз в пределах одной колонии ледебурита непрерывна, то есть относится к одному кристаллу.

В зависимости от температуры, фазовый состав ледебурита может быть разным. Так в температурном интервале от 1147 °C до 727 °C ледебурит состоит из аустенита и цементита, а при температурах ниже 727 °C — из феррита и цементита.

Ледебурит обладает высокими твёрдостью и хрупкостью.

Фазы в системе «железо-углерод»

В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

Жидкая фаза

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

Феррит

Феррит (Ф, α)- твердый раствор внедрения углерода в α-железе (от латинского слова ferrum – железо). Различают низкотемпературный феррит с предельной растворимостью углерода 0,02 % при температуре 727° С (точка P) и высокотемпературный δ-феррит (в интервале температур 1392…1539° С) с предельной растворимостью углерода 0,1 % при температуре 1499° С (точка J).

Свойства феррита близки к свойствам железа. Он мягок (твердость – 80 — 130 НВ, временное сопротивление – σв=300 МПа) и пластичен (относительное удлинение — δ=50 %), магнитен до 768° С.

Под микроскопом феррит выглядит как светлые полиэдрические зерна. В сталях может существовать в виде сетки (разной толщины, в зависимости от содержания углерода), зерен (малоуглеродистые стали), пластин или игл (видманштетт).

Аустенит в сталях

Аустенит (А, γ) – твердый раствор внедрения углерода в γ–железо (по имени английского ученого Р. Аустена). Углерод занимает место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в γ -железе 2,14 % при температуре 1147° С (точка Е). Аустенит имеет твердость 180 НВ, пластичен (относительное удлинение – δ=40…50 %), парамагнитен. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования. Под микроскопом выглядит как светлые полиэдрические зерна с двойниками.

Цементит – формы существования

В железоуглеродистых сплавах присутствуют фазы: цементит первичный, цементит вторичный, цементит третичный. Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.

Поскольку углерод в сплавах с железом встречается в виде цементита и графита, существуют две диаграммы состояния, описывающие условия равновесия фаз в системах железо — цементит и железо — графит. Первая диаграмма (Fе — Fе3С) называется цементитной (метастабильная), вторая (Fе — С) — графитной (стабильная). Оба варианта диаграммы приводятся вместе в одной системе координат: температура — содержание углерода. Диаграмма состояния системы железо — углерод построена по результатам многочисленных исследований, проведенных учеными ряда стран. Особое место среди них занимают работы Д.К. Чернова

Он открыл существование критических точек в стали, определил их зависимость от содержания углерода, заложил основы для построения диаграммы состояния железоуглеродистых сплавов в ее нижней, наиболее важной части

Буквенное обозначение узловых точек в диаграмме является общепринятым как в России, так и за рубежом.

Диаграмма состояния железо-углерод

Имеющиеся во всех областях диаграммы фазы видны на рисунке. Значение всех линий указано в таблице.

Ликвидус по всей диаграмме проходит по линиям АВ, ВС, СD; солидус — по линиям АН, НJ, JЕ, ЕСF. Сплавы железа с углеродом обычно делят на стали и чугуны. Условной границей для такого деления является 2,14 % С (точка E). Сплавы, содержащие углерода менее 2,14 %, относятся к сталям, более 2,14 % — к чугунам.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения. Обозначаются буквой А. В зависимости от того, при нагреве или при охлаждении определяется критическая точка, к букве А добавляется индекс с (от слова chauffage – нагрев) при нагреве и индекс r (от слова refroidissement – охлаждение) при охлаждении с оставлением цифры, характеризующей данное превращение.

Таким образом, например, нагрев доэвтектоидной стали выше соответствующей точки на линии GS обозначается как нагрев выше точки АС3. При охлаждении же этой стали первое превращение должно быть обозначено как Аr3, второе (на линии РSК) — как Аr1.

Основная фаза, инициирующая зарождение ледебурита

В-эвтектический белый чугун, первичный цементит кристаллизуется из жидкости в виде плоской иглой, а затем красный Брайт формируется. При комнатной температуре эвтектический белый чугун содержит 2 структурные компоненты. Это первичный цементит и красный Брайт.

Красный Бритт, прежде всего, если содержание углерода достаточно высокое это эквивалентно инструментальной стали), а во-вторых, образуется при высокой температуре. Содержание карбидообразующих легирующих элементов (cr, w, ti, mo и др.).

Введение большого количества этих легирующих элементов снижает растворимость углерода в Оатах и перлите, а в некоторых случаях приводит к возможности теории с относительно низким содержанием углерода.

Присутствие в сплавах: чугун, сталь

Ледебурит присутствует в микроструктуре некоторых сталей и чугунов. Представляет собой смесь 4,3 % углерода в железе и является эвтектической смесью аустенита и цементита. В некоторых высокоуглеродистых сталях ледебурит может присутствовать как отдельный компонент, но чаще встречается с цементитом или перлитом в ряде чугунов.

Наиболее ценны инструментальные стали ледебуритного типа. Такие стали имеют специфический разнообразный состав с высоким содержанием в микроструктуре карбидообразующих легирующих элементов. Это придает высоколегированным инструментальным сталям особые свойства:

  • высокую прочность;
  • износостойкость;
  • повышенную хрупкость;

Присутствие в сплавах

Ледебурит в основном расположен в чугунах (эвтектический, заэвтектический и доэвтектический) и нержавеющих сплавах.

Чугун

Примесь ледебурита появляется в пространстве чистого железоуглеродистого состава в пределах углеродного концентрата 2.15-6.68%.

Стоит запомнить, что эвтектический, заэвтектический и доэвтектический металлы, включают в себя несколько механизмов зарождения:

Доэвтектический. В то время как жидкая фаза в железе начинает своё охлаждение, первым процесс кристаллизации проходит аустенит, в результате чего составляющие фазы постепенно изменяются в направлении возрастания углеродной консистенции. Достигнув точки эвтектики в режиме 1145 °Cи 4.35% углерода, происходит этап перестройки ледебурита. Постепенно охлаждаясь до 726 °C, имеющиеся компоненты начинают реструктуризацию, так как аустенит объединяется с углеродом, после чего образуется цементит (вторичный). Далее, элемент, выделяясь на краях капсул аустенита, производит слияние с цементитом первичным. Пройдя охлаждение ниже 726 градусов, аустенит проводит образование в перлит.

Эвтектический. Охлаждаясь до 1145 °C, жидкий поток эвтектики ледебурита начинает единовременную кристаллизацию помеси дополнительных веществ. В конечном итоге аустенит образовывает распад на цементит и феррит.

Заэвтектический. Нагреваемый элемент проходит этап формирования из жидкого состояния в цементит первичный, образующий плоские стержни, а следом зарождается ледебурит. Комнатная температура способствует содержанию первичного цементита и ледебурита в белом заэвтектическом чугуне.

Фазы в системе «железо-углерод»

В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

Жидкая фаза

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

Феррит

Феррит (Ф, α)- твердый раствор внедрения углерода в α-железе (от латинского слова ferrum – железо). Различают низкотемпературный феррит с предельной растворимостью углерода 0,02 % при температуре 727° С (точка P) и высокотемпературный δ-феррит (в интервале температур 1392…1539° С) с предельной растворимостью углерода 0,1 % при температуре 1499° С (точка J).

Свойства феррита близки к свойствам железа. Он мягок (твердость – 80 — 130 НВ, временное сопротивление – σв=300 МПа) и пластичен (относительное удлинение — δ=50 %), магнитен до 768° С.

Под микроскопом феррит выглядит как светлые полиэдрические зерна. В сталях может существовать в виде сетки (разной толщины, в зависимости от содержания углерода), зерен (малоуглеродистые стали), пластин или игл (видманштетт).

Аустенит в сталях

Аустенит (А, γ) – твердый раствор внедрения углерода в γ–железо (по имени английского ученого Р. Аустена). Углерод занимает место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в γ -железе 2,14 % при температуре 1147° С (точка Е). Аустенит имеет твердость 180 НВ, пластичен (относительное удлинение – δ=40…50 %), парамагнитен. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования. Под микроскопом выглядит как светлые полиэдрические зерна с двойниками.

Цементит – формы существования

В железоуглеродистых сплавах присутствуют фазы: цементит первичный, цементит вторичный, цементит третичный. Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.

Поскольку углерод в сплавах с железом встречается в виде цементита и графита, существуют две диаграммы состояния, описывающие условия равновесия фаз в системах железо — цементит и железо — графит. Первая диаграмма (Fе — Fе3С) называется цементитной (метастабильная), вторая (Fе — С) — графитной (стабильная). Оба варианта диаграммы приводятся вместе в одной системе координат: температура — содержание углерода. Диаграмма состояния системы железо — углерод построена по результатам многочисленных исследований, проведенных учеными ряда стран. Особое место среди них занимают работы Д.К. Чернова

Он открыл существование критических точек в стали, определил их зависимость от содержания углерода, заложил основы для построения диаграммы состояния железоуглеродистых сплавов в ее нижней, наиболее важной части

Буквенное обозначение узловых точек в диаграмме является общепринятым как в России, так и за рубежом.

Диаграмма состояния железо-углерод

Имеющиеся во всех областях диаграммы фазы видны на рисунке. Значение всех линий указано в таблице.

Ликвидус по всей диаграмме проходит по линиям АВ, ВС, СD; солидус — по линиям АН, НJ, JЕ, ЕСF. Сплавы железа с углеродом обычно делят на стали и чугуны. Условной границей для такого деления является 2,14 % С (точка E). Сплавы, содержащие углерода менее 2,14 %, относятся к сталям, более 2,14 % — к чугунам.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения. Обозначаются буквой А. В зависимости от того, при нагреве или при охлаждении определяется критическая точка, к букве А добавляется индекс с (от слова chauffage – нагрев) при нагреве и индекс r (от слова refroidissement – охлаждение) при охлаждении с оставлением цифры, характеризующей данное превращение.

Таким образом, например, нагрев доэвтектоидной стали выше соответствующей точки на линии GS обозначается как нагрев выше точки АС3. При охлаждении же этой стали первое превращение должно быть обозначено как Аr3, второе (на линии РSК) — как Аr1.

1.doc

Диаграмма состояния железо – углерод. Структура и свойства углеродистых сталей и чугунов

  1. Изучить диаграмму состояния железо-углерод.
  2. Изучить микроструктуры углеродистых сталей в равновесном (отожженном) состоянии. Установить зависимость между структурами и механическими свойствами углеродистых сталей.
  3. Изучить микроструктуры белых, серых, высокопрочных и ковких чугунов. Установить зависимость между составом, условиями получения, структурами и механическими свойствами чугунов.

^ 2. СОДЕРЖАНИЕ РАБОТЫ

  1. Ознакомиться с построением кривых охлаждения отдельных сплавов системы железо-углерод.
  2. Ознакомиться с зависимостью механических свойств углеродистых сталей от содержания углерода.
  3. Изучить и зарисовать микроструктуры углеродистых сталей и чугунов. Обозначить названия структурных составляющих.
  4. Оформить отчет к лабораторной работе.

^ 3. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ. 3γ3железо – углерод αоδ %. bоо. Fe3CНВ железо-цементитжелезо-графитДиаграмма состояния железо-цементитАВСВDAHJECFESPQДиаграмма железо-цементит (Fe – Fe3C)HJB,ECFРSК HJBLBнAJ.еECFLCАEЕо^ PSK ФРFeFe3CLАВСDANHGPQJESGN.AHBδ NHJδ JECBCDFSECFKGSPα QPSKLα железо-цементита, GSPа//BСJEGS ФРPQФ + П +ЦIIIBСJE2 ESES% SKIIIIIJEBСLCАE+Ц.Лвид (П+Ц)Л (А+Ц)/видIIDCES . ФР/РQвидIII

    1. Влияние углерода и постоянных примесей на свойства сталей.
Сплав 1 (доэвтектоидная сталь) Сплав 2 (заэвтектоидная сталь)
Рис.3.3 Рис.3.4.
Сплав 3 (доэвтектический чугун) Сплав 4 (заэвтектический чугун)
Рис.3.6 Рис.3.7

bг – ^ По химическому составуПо качеству%Р.^ По степени раскисления и характеру затвердевания^ При классификация по структурематрицFeFe3C

а б
а – доэвтектический, б – эвтектический белый чугун

% % %b% . %,

  1. Диаграмму состояния FeC(в масштабе).
  2. Кривые охлаждения сплавов (содержание углерода задает преподаватель) согласно диаграммы FeC.
  3. График зависимости механических свойств стали от содержания углерода.
  1. Общая характеристика диаграммы FeC..
  2. Назовите области диаграммы (однофазные и двухфазные).
  3. Назовите фазы в диаграмме и охарактеризуйте каждую из них.
  4. В каких состояниях может находиться углерод в железоуглеродистых сплавах ?
  5. Объясните, как определяется состав и количество фаз в диаграмме.
  6. Расскажите о классификации сталей.
  7. Влияние углерода на механические свойства сталей.
  8. Структура, свойства, маркировка и применение конструкционных углеродистых: сталей.

,

  1. Высокопрочный чугун (структура, механические свойства, маркировка, получение и применение).
  2. Ковкий чугун (структура, механические свойства, маркировка, получение и применение).

^ СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

  1. Лахтин Ю.М., Леонтьева Б.П. Материаловедение. – М.: Машиностроение, 1990. – 493 с.
  2. Основы материаловедения. Под ред. И.И.Сидорина. – М.: Машиностроение, 1976.
  3. Геллер Ю.А., Рахштадт А.Г. Материаловедение. – М.: Металлургия, 1983.
  4. Лахтин Ю.М. Металловедение и термическая обработка металлов. – М.: Металлургия, 1984. 359 с.
  5. Руководство к лабораторным работам по материаловедению. Под ред. И,И.Сидорина. – М.: Высшая школа, 1967.

Поиск по сайту:  

Структура и свойства

Итак, определить, что представляет собой ледебурит достаточно просто. Главной фазой, которая обеспечивает его образование, считается цементит. На поверхности этой составляющей, за рождение которой отвечает эвтектическая жидкость, появляется пластина дендрита аустенита. Следом происходит мгновенное парное разрастание кристаллических элементов из фаз. С учётом температурных режимов, ледебуритный состав, как правило, имеет различные компоненты. К примеру, температура 1145 – 726 свидетельствует о присутствии цементита и аустенита в ледебуритной основе. Понижение теплового показателя обеспечивает появление таких объектов, как феррит и цементит. Преимущество ледебурита состоит в том, что он отличается повышенной хрупкостью и твердостью.

Структуры могут быть однофазные, двухфазные и многофазные. К однофазным структурам относят феррит, аустенит, цементит.

Феррит – твердый раствор внедрения углерода в Fea. В низкотемпе-ратурной модификации Fea максимальная растворимость углерода равна 0,02% при температуре 727 °С (т. Р), в высокотемпературной модификацииFea– 0,1% при температуре 1499 °С (т. Н). При комнатной температуре в феррите содержится 0,01% С. Характеризуется низкой прочностью (σв= 250 МПа) и твердостью 63-130 НВ, высокой пластичностью (относительное удлинение δ = 40%). На диаграмме состояния феррит занимает область GPQ. Образуется из аустенита (рис. 6.2).

Аустенит – твердый раствор внедрения углерода вFYс ГЦК решеткой. Максимальная растворимость равна 2,14% при температуре 1147 °С (т. Е), что практически на два порядка выше, чем в феррите. Аустенит пластичен, но прочнее феррита (НВ 160–200). Аустенит парамагнитен (рис. 6.3).

Рис. 6.3. Аустенит

Рис. 6.4. Феррит и аустенит

Цементит– химическое соединение железа с углеродом. Стехиометрическая формула цементита –Fe3C(карбид железа), содержит 6,67% С. Цементит имеет сложную орторомбическую кристаллическую решётку (рис. 6.5), обладает высокой твердостью (НВ 800) и большой хрупкостью. Чем больше цементита в сплавах, тем большей твердостью и меньшей пластичностью они обладают. По условиям образования различают: первичный цементит ЦI(образуется при кристаллизации из жидкости в виде больших светлых кристаллов), вторичный цементит Цп(выделяется из аустенита в виде сетки по границам зерен), третичный цементит Цш(выделяется из графита в виде мелких зерен).

В зависимости от условий кристаллизации и последующей обработки цементит может иметь различную форму – равноосных зёрен, сетки по границам зёрен, пластин, а также видманштеттову структуру.

Цементит в разных количествах, в зависимости от концентрации, присутствует в железоуглеродистых сплавах уже при малых содержаниях углерода. Формируется в процессе кристаллизации из расплава чугуна. Выделается в сталях при охлаждении аустенита или при нагреве мартенсита. Цементит является фазовой и структурной составляющей железоуглеродистых сплавов, составной частью ледебурита, перлита, сорбита и троостита. Цементит – представитель так называемых фаз внедрения, соединений переходных металлов с легкими металлоидами. В фазах внедрения велики доля как ковалентной, так и металлической связи. Прочность 8500 МПа.

Рис. 6.5. Кристаллическое строение цементита

К двухфазным составляющим относят перлит и ледебурит.

Перлит – механическая смесь (эвтектоид) феррита и цементита (Ф+Ц). Существует ниже 727 °С и содержит 0,8% С. Образуется в результате распада аустенита в процессе его охлаждения при температурах ниже 727 °C. Перлит в зависимости от формы частичек цементита бывает пластинчатым или зернистым, что определяет его механические свойства. Перлит чаще всего имеет пластинчатое строение и является прочной структурной составляющей (σв= 800-900 МПа, δ ≤ 16%, 180-220 HB).

Ледебурит – механическая смесь (эвтектика) в области температур от 1147 до 727 °С состоит из аустенита и цементита (А+Ц), а ниже 727 °С состоит из перлита и цементита (П+Ц). Содержит 4,3% С.

  • Ядерный сок это кратко

      

  • Опыт иоффе и милликена кратко

      

  • Интеграл мора сопромат кратко

      

  • Шумлянский вклад в медицину кратко

      

  • Право государственной собственности на природные ресурсы кратко

Присутствие в железоуглеродистых сплавах

Чугуны

Ледебуритная смесь возникает, для чистых железоуглеродистых сплавов в интервале концентраций углерода от 2 ,14% до 6,67 %, что соответствует чугунам. Механизм образования ледебурита в доэвтектических (левее точки эвтектики, соответствующей 4,3 углерода, на диаграмме железо-углерод), эвтектических и заэвтектических (правее точки эвтэктики) чугунах различается.

в доэвтектических чугунах

При охлаждении жидкой фазы состава доэвтектического чугуна первым начинает кристаллизоваться аустенит, вследствие чего состав жидкой фазы начинает смещаться в сторону увеличения концентрации углерода (ввиду меньшей растворимости углерода в аустените). По достижении точки эвтектики (4,3 % углерода, 1147 °C) начинается кристаллизация эвтектики — ледебурита. В процессе дальнейшего охлаждения чугуна в интервале температур от 1147 °C до 727 °C аустенит обедняется углеродом и выделяется вторичный цементит. Вторичный цементит, выделяющийся по границам зерен аустенита, сливается с цементитом ледебурита, поэтому практически не виден под микроскопом. При небольшом переохлаждении ниже 727 °C аустенит по эвтектоидной реакции превращается в перлит (разделяется на феррит и цементит). Таким образом, в доэвтектических белых чугунах, при комнатной температуре, ледебурит, как структурная составляющая, присутствует наряду с перлитом и вторичным цементитом.

в эвтектическом чугуне

При охлаждении жидкой фазы состава точки эвтектики до температуры 1147 °C начинается одновременная кристаллизация смеси аустенита и цементита — ледебурита. В дальнейшем аустенит распадается на феррито-цементитную смесь (перлит).

в заэвтектических чугунах

В заэвтектических белых чугунах из жидкости кристаллизуется первичный цементит в виде плоских игл, затем образуется ледебурит. При комнатной температуре эаэвтектический белый чугун содержит две структурные составляющие: первичный цементит и ледебурит.

Ледебурит может образовываться в сталях если в них, во-первых, содержание углерода достаточно велико (свыше 0,7 % (~1,3 %—1,5 %), что соответствует инструментальным сталям), и, во-вторых, при высоком содержании карбидообразующих легирующих элементов (Cr, W, Ti, Mo и др.). Введение этих легирующих элементов, в больших количествах, уменьшает растворимость углерода в аустените и перлите, что, в определённых случаях, и приводит к возможности выделения эвтектики при, сравнительно, малых содержаниях углерода.
Такие стали (например, быстрорежущая) называют ледебуритными.

Структура и свойства

Итак, определить, что представляет собой ледебурит достаточно просто. Главной фазой, которая обеспечивает его образование, считается цементит. На поверхности этой составляющей, за рождение которой отвечает эвтектическая жидкость, появляется пластина дендрита аустенита. Следом происходит мгновенное парное разрастание кристаллических элементов из фаз. С учётом температурных режимов, ледебуритный состав, как правило, имеет различные компоненты. К примеру, температура 1145 – 726 свидетельствует о присутствии цементита и аустенита в ледебуритной основе. Понижение теплового показателя обеспечивает появление таких объектов, как феррит и цементит. Преимущество ледебурита состоит в том, что он отличается повышенной хрупкостью и твердостью.

Фазы в системе «железо-углерод»

В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

Жидкая фаза

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

Феррит

Феррит (Ф, α)- твердый раствор внедрения углерода в α-железе (от латинского слова ferrum – железо). Различают низкотемпературный феррит с предельной растворимостью углерода 0,02 % при температуре 727° С (точка P) и высокотемпературный δ-феррит (в интервале температур 1392…1539° С) с предельной растворимостью углерода 0,1 % при температуре 1499° С (точка J).

Свойства феррита близки к свойствам железа. Он мягок (твердость – 80 — 130 НВ, временное сопротивление – σв=300 МПа) и пластичен (относительное удлинение — δ=50 %), магнитен до 768° С.

Под микроскопом феррит выглядит как светлые полиэдрические зерна. В сталях может существовать в виде сетки (разной толщины, в зависимости от содержания углерода), зерен (малоуглеродистые стали), пластин или игл (видманштетт).

Аустенит в сталях

Аустенит (А, γ) – твердый раствор внедрения углерода в γ–железо (по имени английского ученого  Р. Аустена). Углерод занимает место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в γ -железе 2,14 % при температуре 1147° С (точка Е). Аустенит имеет твердость 180 НВ, пластичен (относительное удлинение – δ=40…50 %), парамагнитен. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования. Под микроскопом выглядит как светлые полиэдрические зерна с двойниками.

Цементит – формы существования

В железоуглеродистых сплавах присутствуют фазы: цементит первичный, цементит вторичный, цементит третичный. Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.

Поскольку углерод в сплавах с железом встречается в виде цементита и графита, существуют две диаграммы состояния, описывающие условия равновесия фаз в системах железо — цементит и железо — графит. Первая диаграмма (Fе — Fе3С) называется цементитной (метастабильная), вторая (Fе — С) — графитной (стабильная). Оба варианта диаграммы приводятся вместе в одной системе координат: температура — содержание углерода. Диаграмма состояния системы железо — углерод построена по результатам многочисленных исследований, проведенных учеными ряда стран. Особое место среди них занимают работы Д.К. Чернова

Он открыл существование критических точек в стали, определил их зависимость от содержания углерода, заложил основы для построения диаграммы состояния железоуглеродистых сплавов в ее нижней, наиболее важной части

Буквенное обозначение узловых точек в диаграмме является общепринятым как в России, так и за рубежом.

Диаграмма состояния железо-углерод

Имеющиеся во всех областях диаграммы фазы видны на рисунке. Значение всех линий указано в таблице.

Ликвидус по всей диаграмме проходит по линиям АВ, ВС, СD; солидус — по линиям АН, НJ, JЕ, ЕСF. Сплавы железа с углеродом обычно делят на стали и чугуны. Условной границей для такого деления является 2,14 % С (точка E). Сплавы, содержащие углерода менее 2,14 %, относятся к сталям, более 2,14 % — к чугунам.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения. Обозначаются буквой А. В зависимости от того, при нагреве или при охлаждении определяется критическая точка, к букве А добавляется индекс с (от слова chauffage – нагрев) при нагреве и индекс r (от слова refroidissement – охлаждение) при охлаждении с оставлением цифры, характеризующей данное превращение.

Таким образом, например, нагрев доэвтектоидной стали выше соответствующей точки на линии GS обозначается как нагрев выше точки АС3. При охлаждении же этой стали первое превращение должно быть обозначено как Аr3, второе (на линии РSК) — как Аr1.

Термообработка сталей в ООО КВАДРО

Наше предприятие уже почти четверть века производит на заказ термообработку металлов в Санкт-Петербурге. Заказать термообработку у нас Вы можете, оставив Вашу заявку на электронной почте или позвонив нам.

Мы производим термообработку сталей (в т.ч. нержавеющих, инструментальных и т.п.)по чертежам Заказчика или заданным режимам, а так же  иных металлов и сплавов (алюминиевых и титановых, латуней и бронз, и т.д.).

Основные виды термической обработки металлов, осуществляемые на нашем предприятии на заказ:

  • закалка (в т.ч. в соляных ваннах, например, для калки быстрорезов);

  • отпуск;

  • отжиг;

  • нормализация;

  • улучшение;

Напоминаем так же, что у нас вы можете воспользоваться широким спектром методов металлообработки, включая фрезерные работы и токарную обработку.

Чтение диаграммы железо-углерод

Состав сплава с данным исходным содержанием углерода при заданной температуре мы можем увидеть, двигаясь по вертикальной линии, соответствующей содержанию углерода в сплаве.

Рассмотрим, например, область AEC. С ней соседствуют области аустенита AESG и жидкой фазы. Сплавы в ней состоят из жидкой фазы и образующегося твердого аустенита. Как определить концентрацию углерода в разных фазах для данного сплава? Рассмотрим для примера сплав с исходной концентрацией углерода 2,5% при температуре 1250°С.

Проведем из этой точки графика «2,5% C – 1250°С» горизонтальную прямую. Пересечение этой прямой с линией AE, граничащей с областью аустенита, покажет концентрацию углерода в аустените при данной температуре (~1.5%).

Пересечение этой же горизонтальной прямой с линией AС, граничащей с областью жидкой фазы, покажет концентрацию углерода в жидкой фазе при данной температуре (~3.5%).

Именно таким образом мы можем определить концентрацию углерода в фазах любого сплава при заданной температуре:

  • в жидкой фазе и аустените в области AEC;
  • в жидкой фазе в области CDF (концентрация углерода в цементите, конечно, постоянна – 6,67%);
  • в аустените в области SEFK;
  • в феррите в области QPKL;
  • в феррите и аустените в области GPS.

Как видим, при концентрации углерода выше 2,14% насыщение охлаждаемого расплава углеродом всегда стремится к 4,3% (по линиям AC и DC) по мере приближения к температуре 1147°С (уровень ECF). Далее происходит превращение жидкости в ледебурит (эвтектику). Естественно, с этим же средним содержанием углерода.

По мере приближения к температуре 727°С (уровень PSK) концентрация углерода в аустените («свободном» и/или входящем в состав ледебурита) стремится к 0,8% (по линиям GS и ES). Далее происходит превращение аустенита в перлит (эвтектоид). Перлит, конечно, имеет среднее содержанием углерода 0,8%.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий