Деформация сдвига

Расчёты на прочность при изгибе

Особую важность при проектировании конструкций и их отдельных элементов играют предварительные расчёты на прочность при возникающих изгибах. По результатам проведенных расчётов устанавливают фактические (реальные) и допустимые напряжения, которые способны выдержать элементы и вся конструкция в целом

Это позволит определить реальный срок службы разработать рекомендации по правильной эксплуатации разработанного объекта.

Условие прочности выводится в результате сравнения двух показателей. Наибольшего напряжения, которое возникает в поперечном сечении при эксплуатации и допустимого напряжения для конкретного элемента. Прочность зависит от применённого материала, размера детали, способа обработки и его физико-механических и химических свойств.

Для решения поставленной задачи применяются методы и математический аппарат, разработанный в дисциплинах техническая механика, материаловедение и сопротивление материалов. В этом случае применяются:

  • дифференциальные зависимости Журавского (семейство дифференциальных уравнений связывающие основные параметры при деформации и их производные);
  • способы определения перемещения (наиболее эффективными считаются метод Мора и правило Верещагина);
  • семейство принятых гипотез;
  • разработанные правила построения графических изображений (построение эпюр).

Расчёт параметров производится в три этапа:

  • при проверочном расчёте (вычисляют величину максимального напряжения);
  • на этапе проектирования (производится выбор толщины и параметров сечения бруса);
  • во время вычисления допустимой нагрузки.

Полученные знаки величин напряжений определяются на основании оценки протекающих физических процессов и направления проекций векторов сил и моментов.

Наиболее наглядными результатами расчёта являются построенные эпюры на поверхности разрабатываемого изделия. Они отражают влияние всех силовых факторов на различные слои деталей. 

При чистом изгибе эпюры имеют следующие особенности:

  • на участке исследуемой балки с отсутствием нагрузки, которая носит распределённый характер, эпюра изображается прямой линией;
  • на участке приложения так называемых сосредоточенных сил на эпюре наблюдается изменение направления в форме скачка в том месте к которому приложен вектор силы;
  • в точке появления приложенного момента, скачок равен величине этого параметра;
  • на участке с распределённой нагрузкой интенсивность воздействия изменяется по линейному закону, а поперечные нагрузки носят степенной характер изменения (чаще всего по параболической кривой, с направлением выпуклости в сторону приложенной нагрузке);
  • в границах исследуемого участка функция изгибающего момента приобретает экстремум (на основании методов исследования функций с помощью дифференциального исчисления можно установить характер экстремума – максимум или минимум).

На практике решение систем дифференциальных уравнений может вызвать определённые трудности. Поэтому при расчётах допускаются некоторые прощения, которые не влияют на точность определяемых параметров. К этим упрощениям относятся:

  • расчёт производят с учётом нормальных напряжений;
  • в качестве основного предположения принимают гипотезу о плоских сечениях;
  • продольные волокна не производят дополнительного давления между собой (это позволяет считать, что процессы изгиба носят линейный характер);
  • деформация волокон не зависит от их ширины (значения нормальных напряжений постоянные по всей ширине);
  • для расчётной балки задают одну плоскость симметрии (все внешние силы лежат в этой плоскости);
  • физико-механические характеристики материала подчиняются закону Гука (модуль упругости имеет постоянную величину);
  • процессы в балке подчиняются законам плоского изгиба (это допущение вытекает из соотношений геометрических размеров изделия).

 Современные методы исследования воздействия внешних сил, внутренних напряжений и моментов позволяют с высокой степенью точности рассчитать прочность каждой детали и всей конструкции в целом. Применение компьютерных методов расчёта, фрактальной геометрии и 3D графики позволяет получить подробную картину происходящих процессов.

Типы деформации

В зависимости от того, как приложена внешняя сила, различают деформации растяжения-сжатия, сдвига, изгиба, кручения.

Деформация растяжения-сжатия

Деформация растяжения-сжатия вызывается силами, которые приложены к концам бруса параллельно его продольной оси и направлены в разные стороны.

Под действием внешних сил частицы твёрдого вещества, колеблющиеся относительно своего положения равновесия, смещаются. Но этому процессу пытаются помешать внутренние силы взаимодействия между частицами, старающиеся удержать их в исходном положении на определённом расстоянии друг от друга. Силы, препятствующие деформации, называются силами упругости.

Деформацию растяжения испытывают натянутая тетива лука, буксировочный трос автомобиля при буксировке, сцепные устройства железнодорожных вагонов и др.

Когда мы поднимается по лестнице, ступеньки под действием нашей силы тяжести деформируются. Это деформация сжатия. Такую же деформацию испытывают фундаменты зданий, колонны, стены, шест, с которым прыгает спортсмен.

Деформация сдвига

Если приложить внешнюю силу по касательной к поверхности бруска, нижняя часть которого закреплена, то возникает деформация сдвига. В этом случае параллельные слои тела как бы сдвигаются относительно друг друга.

Представим себе расшатанный табурет, стоящий на полу. Приложим к нему силу по касательной к его поверхности, то есть, попросту потянем верхнюю часть табурета на себя. Все его плоскости, параллельные полу, сместятся друг относительно друга на одинаковый угол.

Такая же деформация происходит, когда лист бумаги разрезается ножницами, пилой с острыми зубьями распиливается деревянный брус и др. Деформации сдвига подвергаются все крепёжные детали, соединяющие поверхности, – винты, гайки и др.

Деформация изгиба

Такая деформация возникает, если концы бруса или стержня лежат на двух опорах. В этом случае на него действуют нагрузки, перпендикулярные его продольной оси.

Деформацию изгиба испытывают все горизонтальные поверхности, положенные на вертикальные опоры. Самый простой пример – линейка, лежащая на двух книгах одинаковой толщины. Когда мы поставим на неё сверху что-то тяжёлое, она прогнётся. Точно так же прогибается деревянный мостик, перекинутый через ручей, когда мы идём по нему.

Деформация кручения

Кручение возникает в теле, если приложить пару сил к его поперечному сечению. В этом случае поперечные сечения будут поворачиваться вокруг оси тела и относительно друг друга. Такую деформацию наблюдают у вращающихся валов машин. Если вручную отжимать (выкручивать) мокрое бельё, то оно также будет подвергаться деформации кручения.

Деформации при растяжении-сжатии.

Модуль упругости Юнга и сдвига, коэффициент Пуассона значения (Таблица)

Упругие свойства тел

Ниже приводятся справочные таблицы общеупотребительных констант; если известны две их них, то этого вполне достаточно для определения упругих свойств однородного изотропного твердого тела.

Модуль Юнга или модуль продольной упругости в дин/см2.

Модуль сдвига или модуль кручения G в дин/см2.

Модуль всестороннего сжатия или модуль объемной упругости К в дин/см2.

Объем сжимаемости k=1/K/.

Коэффициент Пуассона µ равен отношению поперечного относительного сжатия к продольному относительному растяжению.

Для однородного изотропного твердого материала имеют место следующие соотношения между этими константами:

G = E / 2(1 + μ) — (α)

μ = (E / 2G) — 1 — (b)

K = E / 3(1 — 2μ) — (c)

Коэффициент Пуассона имеет положительный знак, и его значение обычно заключено в пределах от 0,25 до 0,5, но в некоторых случаях он может выходить за указанные пределы. Степень совпадения наблюдаемых значений µ и вычисленных по формуле (b) является показателем изотропности материала.

Таблицы значений Модуля упругости Юнга, Модуля сдвига и коэффициента Пуассона

Курсивом даны значения, вычисленные из соотношений (a), (b), (c).

Материал при 18°С Модуль Юнга E, 1011 дин/см2. Модуль сдвига G, 1011 дин/см2. Коэффициент Пуассона µ Модуль объемной упругости К, 1011 дин/см2.
Алюминий 7,05 2,62 0,345 7,58
Висмут 3,19 1,20 0,330 3,13
Железо 21,2 8,2 0,29 16,9
Золото 7,8 2,7 0,44 21,7
Кадмий 4,99 1,92 0,300 4,16
Медь 12,98 4,833 0,343 13,76
Никель 20,4 7,9 0,280 16,1
Платина 16,8 6,1 0,377 22,8
Свинец 1,62 0,562 0,441 4,6
Серебро 8,27 3,03 0,367 10,4
Титан 11,6 4,38 0,32 10,7
Цинк 9,0 3,6 0,25 6,0
Сталь (1% С) 1) 21,0 8,10 0,293 16,88
(мягкая) 21,0 8,12 0,291 16,78
Константан 2) 16,3 6,11 0,327 15,7
Манганин 12,4 4,65 0,334 12,4
1) Для стали, содержащий около 1% С, упругие константы, как известно , меняются при термообработке.

2) 60% Cu, 40% Ni.

Экспериментальные результаты, приводимые ниже, относятся к обычным лабораторным материалам, главным образом проволокам.

Вещество Модуль Юнга E, 1011 дин/см2. Модуль сдвига G, 1011 дин/см2. Коэффициент Пуассона µ Модуль объемной упругости К, 1011 дин/см2.
Бронза (66% Cu) -9,7-10,2 3,3-3,7 0,34-0,40 11,2
Медь 10,5-13,0 3,5-4,9 0,34 13,8
Нейзильбер1) 11,6 4,3-4,7 0,37
Стекло 5,1-7,1 3,1 0,17-0,32 3,75
Стекло иенское крон 6,5-7,8 2,6-3,2 0,20-0,27 4,0-5,9
Стекло иенское флинт 5,0-6,0 2,0-2,5 0,22-0,26 3,6-3,8
Железо сварочное 19-20 7,7-8,3 0,29 16,9
Чугун 10-13 3,5-5,3 0,23-0,31 9,6
Магний 4,25 1,63 0,30
Бронза фосфористая2) 12,0 4,36 0,38
Платиноид3) 13,6 3,6 0,37
Кварцевые нити (плав.) 7,3 3,1 0,17 3,7
Резина мягкая вулканизированная 0,00015-0,0005 0,00005-0,00015 0,46-0,49
Сталь 20-21 7,9-8,9 0,25-0,33 16,8
Цинк 8,7 3,8 0,21
1) 60% Cu, 15% Ni, 25% Zn

2) 92,5% Cu, 7% Sn, 0,5% P

3) Нейзильбер с небольшим количеством вольфрама.

Вещество Модуль Юнга E, 1011 дин/см2. Вещество Модуль Юнга E, 1011 дин/см2.
Цинк (чистый) 9,0 Дуб 1,3
Иридий 52,0 Сосна 0,9
Родий 29,0 Красное дерево 0,88
Тантал 18,6 Цирконий 7,4
Инвар 17,6 Титан 10,5-11,0
Сплав 90% Pt, 10% Ir 21,0 Кальций 2,0-2,5
Дюралюминий 7,1 Свинец 0,7-1,6
Шелковые нити1 0,65 Тиковое дерево 1,66
Паутина2 0,3 Серебро 7,1-8,3
Кетгут 0,32 Пластмассы:
Лед (-20С) 0,28 Термопластичные 0,14-0,28
Кварц 7,3 Термореактивные 0,35-1,1
Мрамор 3,0-4,0 Вольфрам 41,1
1) Быстро уменьшается с увеличением нагрузки

2) Обнаруживает заметную упругую усталость

Температурный коэффициент (при 150С)

Et=E11 (1-ɑ (t-15)), Gt=G11 (1-ɑ (t-15))

Сжимаемость k, бар-1 (при 7-110С)
ɑ, для Е ɑ, для G
Алюминий 4,8*10-4 5,2*10-4 Алюминий 1,36*10-6
Латунь 3,7*10-4 4,6*10-4 Медь 0,73*10-6
Золото 4,8*10-4 3,3*10-4 Золото 0,61*10-6
Железо 2,3*10-4 2,8*10-4 Свинец 2,1*10-6
Сталь 2,4*10-4 2,6*10-4 Магний 2,8*10-6
Платина 0,98*10-4 1,0*10-4 Платина 0,36*10-6
Серебро 7,5*10-4 4,5*10-4 Стекло флинт 3,0*10-6
Олово 5,9*10-4 Стекло немецкое 2,57*10-6
Медь 3,0*10-4 3,1*10-4 Сталь 0,59*10-6
Нейзильбер 6,5*10-4
Фосфористая бронза 3,0*10-4
Кварцевые нити -1,5*10-4 -1,1*10-4

Примеры деформаций

Однородные (или аффинные) деформации полезны для выяснения поведения материалов. Представляют интерес некоторые однородные деформации.

  • равномерное расширение
  • чистое расширение
  • равноосное растяжение
  • простой сдвиг
  • чистый сдвиг

Плоские деформации также представляют интерес, особенно в экспериментальном контексте.

Плоская деформация

Плоская деформация, также называемая плоская деформация, это тот, где деформация ограничивается одной из плоскостей в эталонной конфигурации. Если деформация ограничивается плоскостью, описываемой базисными векторами е1, е2, то градиент деформации имеет форму

F=F11е1⊗е1+F12е1⊗е2+F21е2⊗е1+F22е2⊗е2+е3⊗е3{ displaystyle { boldsymbol {F}} = F_ {11} mathbf {e} _ {1} otimes mathbf {e} _ {1} + F_ {12} mathbf {e} _ {1} otimes mathbf {e} _ {2} + F_ {21} mathbf {e} _ {2} otimes mathbf {e} _ {1} + F_ {22} mathbf {e} _ {2} otimes mathbf {e} _ {2} + mathbf {e} _ {3} otimes mathbf {e} _ {3}}

В матричной форме

F=F11F12F21F221{ displaystyle { boldsymbol {F}} = { begin {bmatrix} F_ {11} & F_ {12} & 0 F_ {21} & F_ {22} & 0 0 & 0 & 1 end {bmatrix}}}

От теорема о полярном разложении, градиент деформации с точностью до изменения координат можно разложить на растяжение и поворот. Поскольку вся деформация происходит в плоскости, мы можем написать

F=р⋅U=потому что⁡θгрех⁡θ−грех⁡θпотому что⁡θ1λ1λ21{ displaystyle { boldsymbol {F}} = { boldsymbol {R}} cdot { boldsymbol {U}} = { begin {bmatrix} cos theta & sin theta & 0 – sin theta & cos theta & 0 0 & 0 & 1 end {bmatrix}} { begin {bmatrix} lambda _ {1} & 0 & 0 0 & lambda _ {2} & 0 0 & 0 & 1 end {bmatrix}}}

куда θ угол поворота и λ1, λ2 являются основные участки.

Изохорная плоская деформация

Если деформация изохорная (с сохранением объема), то det (F) = 1 и у нас есть

F11F22−F12F21=1{ displaystyle F_ {11} F_ {22} -F_ {12} F_ {21} = 1}

В качестве альтернативы,

λ1λ2=1{ displaystyle lambda _ {1} lambda _ {2} = 1}

Простой сдвиг

А простой сдвиг Деформация определяется как деформация изохорной плоскости, в которой имеется набор линейных элементов с заданной базовой ориентацией, которые не изменяют длину и ориентацию во время деформации.

Если е1 фиксированная исходная ориентация, при которой линейные элементы не деформируются во время деформации, тогда λ1 = 1 и F·е1 = е1.Следовательно,

F11е1+F21е2=е1⟹F11=1 ;  F21={ displaystyle F_ {11} mathbf {e} _ {1} + F_ {21} mathbf {e} _ {2} = mathbf {e} _ {1} quad implies quad F_ {11} = 1 ~; ~~ F_ {21} = 0}

Поскольку деформация изохорная,

F11F22−F12F21=1⟹F22=1{ Displaystyle F_ {11} F_ {22} -F_ {12} F_ {21} = 1 quad подразумевает quad F_ {22} = 1}

Определять

γ:=F12{ displaystyle gamma: = F_ {12} ,}

Тогда градиент деформации при простом сдвиге можно выразить как

F=1γ11{ displaystyle { boldsymbol {F}} = { begin {bmatrix} 1 & gamma & 0 0 & 1 & 0 0 & 0 & 1 end {bmatrix}}}

Сейчас же,

F⋅е2=F12е1+F22е2=γе1+е2⟹F⋅(е2⊗е2)=γе1⊗е2+е2⊗е2{ displaystyle { boldsymbol {F}} cdot mathbf {e} _ {2} = F_ {12} mathbf {e} _ {1} + F_ {22} mathbf {e} _ {2} = gamma mathbf {e} _ {1} + mathbf {e} _ {2} quad подразумевает quad { boldsymbol {F}} cdot ( mathbf {e} _ {2} otimes mathbf {e} _ {2}) = gamma mathbf {e} _ {1} otimes mathbf {e} _ {2} + mathbf {e} _ {2} otimes mathbf {e} _ { 2}}

С

ея⊗ея=1{ displaystyle mathbf {e} _ {i} otimes mathbf {e} _ {i} = { boldsymbol { mathit {1}}}}

мы также можем записать градиент деформации как

F=1+γе1⊗е2{ displaystyle { boldsymbol {F}} = { boldsymbol { mathit {1}}} + gamma mathbf {e} _ {1} otimes mathbf {e} _ {2}}

Почему краевые дислокации в кристаллических решетках вносят сжимающие деформации растяжения и сдвига в решетку, в то время как винтовые дислокации вносят только сдвиговые деформации ?

Поскольку наблюдение и педагогическое определение предписывают системы координат, в которых это верно », это, вероятно, наиболее точный ответ.

Существует несколько подходов к визуализации поведения полей деформации вокруг дислокаций. Первый подход основан на прямом наблюдении; второй заимствует концепции из механики разрушения. Оба эквивалентны.

  • Краевая дислокация, направленная к вектору Бюргерса. Хотя винт-вывих перпендикулярно ему.
  • Винтовая дислокация “ расстегивает ” решетку, когда она проходит через нее, создавая “ винтовой ” или спиральный предварительный порядок атома вокруг ядра..

Напряжение при сдвиге

Воздействие внешней силы на грань приводит к возникновению в изделии изменения формы. Все напряжения делятся на две категории: нормальные и касательные. Нормальными считаются внутренние напряжения, возникающие в различных слоях изделия, подверженного деформации.

Напряжения и деформации при сдвиге описываются с применением аналитических выражений и графических изображений. Общее состояние описывается пространственным (трёхкоординатным) напряжением. Если в конкретном случае можно выявить сечения, в которых оба вида напряжений равны нулю, можно перейти к более простым моделям описания этого процесса. Ими являются двухкоординатное (плоское) напряжённое состояние или линейное. Две последних модели являются частными случаями трёхкоординатного напряжённого состояния.

 

Касательные напряжения являются мерой скольжения одного поперечного слоя относительно другого. В изменениях на поверхности каждого слоя возникают только касательные напряжения. Для оценки полной картины деформации используют следующие теоретические положения:

  • закон парности касательных напряжений;
  • вычисление экстремальных нормальных напряжений;
  • определение всех тангенциальных напряжений.

Оценка их всех при деформации смещения позволят оценить прочность конструкции.

Основные понятия

Под кручением понимают вид деформации, свойственный для условий приложения к телу силы в поперечной плоскости. В результате этого в поперечном разрезе формируется крутящий момент. Деформациям кручения подвергаются валы и пружины.

Валом называют функционирующую на кручение вращающуюся деталь в виде стержня.

Под торсионом понимают функционирующий на кручение стержень, применяемый в качестве упругого элемента.

Для круглых валов, наиболее обширно применяемых в технике, разработана теория кручения. Она основана на трех положениях:

  • После деформации сохраняется плоское поперечное сечение детали.
  • При деформации радиусы, проходящие поперек детали, не искривляются и проворачиваются на равный угол.
  • При деформации продольные волокна сохраняют размеры, следовательно, разделяющие поперечные сечения расстояния неизменны.

Из приведенных положений следует, что кручение представлено деформацией сдвига материала между соседними поперечными сечениями, обусловленной проворотом последних вокруг оси.

Деформациями при кручении считают взаимный проворот сечений. Они формируются вследствие воздействия на стержень пар сил с перпендикулярными к его продольной оси плоскостями действия.

Угол закручивания стержня цилиндрической конфигурации в границах упругих деформаций определяется уравнением закона Гука для кручения, представляющего отношение произведения момента и длины вала к произведению геометрического полярного инерционного момента и модуля сдвига.

Относительный угол закручивания вычисляют как частное угла закручивания и длины стержня.

Под вращающими либо скручивающими моментами понимают показатели пар сил, воздействующих на вал. Их подразделяют на внешние, называемые вращающими и скручивающими, и внутренние (крутящие). Под влиянием перпендикулярных продольной оси бруса внешних крутящих моментов формируются внутренние. Они передаются на деталь в точках установки шкивов ременных передач, зубчатых колес и т. д.

Крутящий момент представлен силовым фактором, обуславливающим круговое передвижение сечения относительно перпендикулярной ему оси или препятствующим ему. Его значение равно сумме скручивающих усилий по одну сторону от данной точки. Положительными считают внутренние моменты, направленные против часовой стрелки со стороны внешней нормали (отброшенной части). При этом соответствующий внешний момент имеет направление, совпадающее с ходом часовой стрелки. 

Условия прочности и жесткости применяют для решения следующих задач:

  • Выполнения проверочного расчета данных условий для конкретных значений крутящего момента и валов определенного размера и материала.
  • Выполнения проектировочного расчета для вычисления диаметров и нахождения большего из них.
  • Определения грузоподъемности вала путем вычисления крутящего момента из обоих условий и нахождения меньшего из них.

Под эпюрой крутящих моментов понимают график, отображающий закон их изменения по длине либо сечению детали.

При разделении детали по длине на три участка в соответствии с методом сечений получится, что для первого (правого) фрагмента наблюдается линейная зависимость крутящего момента от координаты сечения ввиду влияния равномерно распределенной нагрузки, для второго и третьего участков данная зависимость отсутствует. При этом в точках приложения внешних сосредоточенных усилий наблюдаются скачки, соответствующие их величине.

В сечении наблюдается линейное изменение, определяемое законом касательных напряжений, в прямой зависимости от расстояния от центра.

Полярный инерционный момент сечения представляет собой геометрическую характеристику жесткости при кручении для круглого вала. Полярный момент сопротивления сечения является аналогичным параметром для его прочности.

Следует отметить, что большинство приведенных выше понятий описывается с применением формул.

Определение и общие сведения о деформации сдвига

Основным признаком, характеризующим деформацию сдвига, является сохранение постоянства объёма. Не зависимо от того, в каком направлении действуют силовые факторы этот параметр остаётся неизменным.

Примеры проявления деформации сдвига можно обнаружить при проведении различного рода работ. К таким случаям относятся:

  • при распиловке бруса;
  • отрезание или рубка металла;
  • в результате нарушения целостности крепления металлических или деревянных деталей, соединённых метизами;
  • балки в местах крепления опор;
  • места скрепления мостовых пролётов;
  • крепёж на перемычках соединения железнодорожных рельс;
  • разрезания листа бумаги ножницами.

При определённых условиях наблюдается чистый сдвиг. Он определяется как сдвиг, при котором на все четыре грани (например, прямоугольной детали) оказывают воздействие только напряжения, направленные по касательной к поверхности. В этом случае произойдёт плавный сдвиг всех слоёв детали от верхних к нижним слоям. Тогда внешняя сила изменяет форму детали, а объём сохраняется.

Для оценки величины сдвига и надёжности конструкции используют следующие параметры:

  • величина, направление и точка приложения воздействующей силы;
  • модуль сдвига;
  • угол изменения внешних граней изделия;
  • тангенциальное напряжение;
  • модуль кручения (зависит от физико-механических характеристик материала);

Расчёт и практическое измерение этих параметров необходимы для оценки устойчивости и целостности конструкции. Формула, позволяющая вычислить допустимые изменения, учитывает все воздействия на конкретные слои детали и всю конструкции в целом.

В случае воздействия деформации величина угла считается пропорциональной внешней силе. Увеличение степени воздействия может превратить деформацию сдвига в срез. Это приведёт к разрушению не только элементов крепления (болтов, шпилек, заклёпок), но и всей детали.

Для наглядности изменения формы детали при деформации сдвига динамика процесса обозначается с помощью величины угла смещения и векторов возникающих напряжений. Действующая сила направлена в сторону смещения слоёв рассматриваемой детали.

В современных условиях угол сдвига измеряется различными техническими приборами. Основным прибором для измерения параметров смещения является тензомер. Эти приборы работают на различных физических принципах:

  • оптические (в том числе лазерные);
  • акустические;
  • рентгеновские; электрические;
  • пневматические.

В этих приборах относительная деформация сдвига обрабатывается на современных вычислительных средствах с применением соответствующего программного обеспечения. Каждый метод обладает своими достоинствами и недостатками. Их применение зависит от поставленной задачи, технической и финансовой возможности.

Внутренние усилия при растяжении и сжатии

Деформации на примере организма человека

Тело человека подвергается серьезным механическим нагрузкам от собственных усилий и веса, появляющихся по мере физической деятельности. Вообще, деформация (сдвиг) характерна для человеческого организма:

  • Сжатие испытывает позвоночник, покровы ступней, нижние конечности.
  • Растяжению подвергаются связки, верхние конечности, мышцы, сухожилья.
  • Изгиб характерен для конечностей, костей таза, позвонков.
  • Кручениям подвергается во время поворота шея, при вращении ее испытывают кисти рук.

Но при превышении показателей предельного напряжения, возможен разрыв, например костей плеча, бедра. В связках же ткани соединяются настолько эластично, что допускается растягивание их в два раза. Кстати, деформация сдвига объясняет всю опасность передвижения женщин на высоких каблуках. Вес тела будет переноситься на пальцы, что приведет к повышению нагрузки на кости в два раза.

По результатам медицинских осмотров, проводимых в школах, из десяти детей лишь одного можно считать здоровым. Как деформации связаны с детским здоровьем? Сдвиг, кручение, сжатие – основные причины нарушения осанки у детей и подростков.

Классификация

В общем случае можно выделить следующие виды деформации: упругие и неупругие. Упругие, или обратимые, деформации исчезают после того, как пропадает воздействующая на них сила. Основа этого физического закона используется в силовых тренажёрах, например, в эспандере. Если говорить о физической составляющей, то в основе лежит обратимое смещение атомов — они не выходят за пределы взаимодействия и рамки межатомных связей.

Неупругие (необратимые) деформации, как вы понимаете, являются противоположным процессом. Любая сила, которую приложили к телу, оставляет следы/деформацию. К этому типу воздействия относится и деформация металлов. При таком типе изменения формы зачастую могут меняться и другие свойства материала. Например, при деформации, вызванной охлаждением, может увеличиться прочность изделия.

Определение и общие сведения о деформации сдвига

Основным признаком, характеризующим деформацию сдвига, является сохранение постоянства объёма. Не зависимо от того, в каком направлении действуют силовые факторы этот параметр остаётся неизменным.

Примеры проявления деформации сдвига можно обнаружить при проведении различного рода работ. К таким случаям относятся:

  • при распиловке бруса;
  • отрезание или рубка металла;
  • в результате нарушения целостности крепления металлических или деревянных деталей, соединённых метизами;
  • балки в местах крепления опор;
  • места скрепления мостовых пролётов;
  • крепёж на перемычках соединения железнодорожных рельс;
  • разрезания листа бумаги ножницами.

При определённых условиях наблюдается чистый сдвиг. Он определяется как сдвиг, при котором на все четыре грани (например, прямоугольной детали) оказывают воздействие только напряжения, направленные по касательной к поверхности. В этом случае произойдёт плавный сдвиг всех слоёв детали от верхних к нижним слоям. Тогда внешняя сила изменяет форму детали, а объём сохраняется.

Для оценки величины сдвига и надёжности конструкции используют следующие параметры:

  • величина, направление и точка приложения воздействующей силы;
  • модуль сдвига;
  • угол изменения внешних граней изделия;
  • тангенциальное напряжение;
  • модуль кручения (зависит от физико-механических характеристик материала);

Расчёт и практическое измерение этих параметров необходимы для оценки устойчивости и целостности конструкции. Формула, позволяющая вычислить допустимые изменения, учитывает все воздействия на конкретные слои детали и всю конструкции в целом.

В случае воздействия деформации величина угла считается пропорциональной внешней силе. Увеличение степени воздействия может превратить деформацию сдвига в срез. Это приведёт к разрушению не только элементов крепления (болтов, шпилек, заклёпок), но и всей детали.

Для наглядности изменения формы детали при деформации сдвига динамика процесса обозначается с помощью величины угла смещения и векторов возникающих напряжений. Действующая сила направлена в сторону смещения слоёв рассматриваемой детали.

В современных условиях угол сдвига измеряется различными техническими приборами. Основным прибором для измерения параметров смещения является тензомер. Эти приборы работают на различных физических принципах:

  • оптические (в том числе лазерные);
  • акустические;
  • рентгеновские; электрические;
  • пневматические.

В этих приборах относительная деформация сдвига обрабатывается на современных вычислительных средствах с применением соответствующего программного обеспечения. Каждый метод обладает своими достоинствами и недостатками. Их применение зависит от поставленной задачи, технической и финансовой возможности.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий