Особенности формирования оксидных пленок при газовой коррозии
Весь процесс формирования оксидной пленки на поверхности металла можно разделить на две крупные стадии:
Абсорбирование молекул кислорода на поверхности металлического изделия
Это происходит на тех участках, которые находятся в непосредственном контакте с атмосферой. Заметно появление ионной связи – атом кислорода забирает у металла по два электрода.
Можно предположить, что формирование очень сильной и стабильной связи при протекании такой реакции связано с попаданием кислорода в особое поле атомов металла.
Когда поверхность материала будет полностью наполнена окислителем, окажется сформирована мономолекулярная пленка. Она имеет склонность к утолщению со временем. Это уменьшает дальнейший контакт с кислородом, но сам опасный коррозийный процесс уже оказывается запущен.
Формирование химического соединения
Это явление характерно для ситуации, в которой происходит активное взаимодействие металла и газа. Из-за воздействия окислительных компонентов сплав начинает активно терять валентные электроны. Стремительно формируются и накапливаются продукты коррозии.
Дальнейшее протекание процесса будет во многом характеризоваться особенностями оксидной пленки. Так если она отличается повышенным уровнем защиты, сам коррозийный процесс будет замедляться.
Применение
В нынешнее время применение сплавов цинка с другими металлами можно увидеть в различных отраслях производства.
Для защиты металлов от коррозии
Чтобы защитить другие металлы от развития коррозии, используется чистый материал, которым покрывается уязвимая поверхность. Процесс покрытия называется металлизация.
В автомобильной отрасли
Цинк и сплавы с его добавлением получили большую популярность в автомобильной отрасли. Смеси металлов используют для декоративного покрытия отдельных элементов автомобиля (ручки, бампера, решетки, зеркала). Зубчатые механизмы, рычажные механизмы, покрышки, аккумуляторах — содержат это вещество.
В производстве ювелирных украшений
Бижутерия и украшения из цинковых сплавов известны уже длительное время. Цинк часто смешивается с золотом. Для изготовления белого золота также используют этот металл. Он осветляет готовое изделие.
В строительстве
В строительстве широкое применение получили сплавы из цинка и других металлов. Например, их используют при производстве кровли. Из оцинковки изготавливается не только кровельное покрытие, но и различные трубы, желоба, ветровые планки, подшивка для свесов крыши.
В медицине
Если говорить о медицине, окись цинка часто используется в качестве антисептического средства. Также ее добавляют в составы использующиеся для ускорения регенерации.
Применение цинка в медицине
История открытия Цинк Zincum
Открытие элемента Zincum — Сплав цинка с медью — латунь — был известен ещё в Древней Греции, Древнем Египте, Индии (VII в.), Китае (XI в.). Долгое время не удавалось выделить чистый цинк. В 1738 году в Англии Уильямом Чемпионом был запатентован дистилляционный способ получения цинка.
В промышленном масштабе выплавка цинка началась также в XVIII в.: в 1743 году в Бристоле вступил в строй первый цинковый завод, основанный Уильямом Чемпионом, где получение цинка проводилось дистилляционным способом:
В 1746 А. С. Маргграф в Германии разработал похожий способ получения чистого цинка путём прокаливания смеси его оксида с углём без доступа воздуха в глиняных огнеупорных ретортах с последующей конденсацией паров цинка в холодильниках. Маргграф описал свой метод во всех деталях и этим заложил основы теории производства цинка. Поэтому его часто называют первооткрывателем цинка.
- 1805 году Чарльз Гобсон и Чарльз Сильвестр из Шеффилда запатентовали способ обработки цинка — прокатка при 100—150 °C
- 1 января 1905 — первый в России цинк был получен на
- 1915 году в Канаде и США — первые заводы, где цинк получали электролитическим способом
Историческая справка
Само название «цинк» впервые было упомянуто в книге « Liber Mineralium » Парацельса. По некоторым данным оно означало «зубец». Сплав цинка с медью или латунь известен давно. Его применяли в Древней Греции, Индии и Древнем Египте, позднее материал стал известен в Китае. В чистом виде металл удалось получить лишь в первой половине XVIII века в 1738 году в Великобритании при помощи дистилляционного способа. Его открывателем стал Уильям Чемпион. Промышленное производство началось через 5 лет, а в 1746 году в Германии химик Андреас Сигизмунд Маргграф разработал и в деталях описал собственный способ получения цинка. Он предлагал использовать метод прокаливания смеси окиси металл с углем в огнеупорных ретортах из глины без доступа воздуха. Последующая конденсация паров должна была проходить в холодильнике. Из-за подробного описания и кропотливых разработок Маргграфа часто называют первооткрывателем вещества.
В начале XIX века был найден способ выделения металла путем прокатки при 100 C о-150 C о. В начале следующего века научились добывать цинк электролитическим способом. В России первый металл получили только в 1905 году.
Цинк — общая характеристика элемента, химические свойства цинка и его соединений
Цинк — элемент побочной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 30. Обозначается символом Zn (лат. Zincum). Простое вещество цинк при нормальных условиях — хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка).
В четвертом периоде цинк является последним d-элементом, его валентные электроны 3d104s2.
В образовании химических связей участвуют только электроны внешнего энергетического уровня, поскольку конфигурация d10 является очень устойчивой. В соединениях для цинка характерна степень окисления +2.
Цинк – химически активный металл, обладает выраженными восстановительными свойствами, по активности уступает щелочно-земельным металлам. Проявляет амфотерные свойства.
Взаимодействие цинка с неметаллами
При сильном нагревании на воздухе сгорает ярким голубоватым пламенем с образованием оксида цинка: 2Zn + O2 → 2ZnO.
При поджигании энергично реагирует с серой: Zn + S → ZnS.
С галогенами реагирует при обычных условиях в присутствии паров воды в качестве катализатора: Zn + Cl2 → ZnCl2.
При действии паров фосфора на цинк образуются фосфиды: Zn + 2P → ZnP2 или 3Zn + 2P → Zn3P2.
С водородом, азотом, бором, кремнием, углеродом цинк не взаимодействует.
Взаимодействие цинка с водой
Реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода: Zn + H2O → ZnO + H2.
Взаимодействие цинка с кислотами
В электрохимическом ряду напряжений металлов цинк находится до водорода и вытесняет его из неокисляющих кислот: Zn + 2HCl → ZnCl2 + H2; Zn + H2SO4 → ZnSO4 + H2.
Взаимодействует с разбавленной азотной кислотой, образуя нитрат цинка и нитрат аммония: 4Zn + 10HNO3 → 4Zn(NO3)2 + NH4NO3 + 3H2O.
Реагирует с концентрированными серной и азотной кислотами с образованием соли цинка и продуктов восстановления кислот: Zn + 2H2SO4 → ZnSO4 + SO2 + 2H2O; Zn + 4HNO3 → Zn(NO3)2 + 2NO2 + 2H2O
Взаимодействие цинка со щелочами
Реагирует с растворами щелочей с образованием гидроксокомплексов: Zn + 2NaOH + 2H2O → Na2 + H2
при сплавлении образует цинкаты: Zn + 2KOH → K2ZnO2 + H2.
Взаимодействие с аммиаком
С газообразным аммиаком при 550–600°С образует нитрид цинка: 3Zn + 2NH3 → Zn3N2 + 3H2; растворяется в водном растворе аммиака, образуя гидроксид тетраамминцинка: Zn + 4NH3 + 2H2O → (OH)2 + H2.
Взаимодействие цинка с оксидами и солями
Цинк вытесняет металлы, стоящие в ряду напряжения правее него, из растворов солей и оксидов: Zn + CuSO4 → Cu + ZnSO4; Zn + CuO → Cu + ZnO.
Оксид цинка (II) ZnO
– белые кристаллы, при нагревании приобретают желтую окраску. Плотность 5,7 г/см3, температура возгонки 1800°С. При температуре выше 1000°С восстанавливается до металлического цинка углеродом, угарным газом и водородом: ZnO + C → Zn + CO; ZnO + CO → Zn + CO2; ZnO + H2 → Zn + H2O.
С водой не взаимодействует. Проявляет амфотерные свойства, реагирует с растворами кислот и щелочей: ZnO + 2HCl → ZnCl2 + H2O; ZnO + 2NaOH + H2O → Na2.
При сплавлении с оксидами металлов образует цинкаты: ZnO + CoO → CoZnO2.
При взаимодействии с оксидами неметаллов образует соли, где является катионом: 2ZnO + SiO2 → Zn2SiO4, ZnO + B2O3 → Zn(BO2)2.
Гидроксид цинка (II) Zn(OH)2
– бесцветное кристаллическое или аморфное вещество. Плотность 3,05 г/см3, при температуре выше 125°С разлагается: Zn(OH)2 → ZnO + H2O.
Гидроксид цинка проявляет амфотерные свойства, легко растворяется в кислотах и щелочах: Zn(OH)2 + H2SO4 → ZnSO4 + 2H2O; Zn(OH)2 + 2NaOH → Na2;
также легко растворяется в водном растворе аммиака с образованием гидроксида тетраамминцинка: Zn(OH)2 + 4NH3 → (OH)2.
Получается в виде осадка белого цвета при взаимодействии солей цинка со щелочами: ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl.
Свойства цинка (таблица): температура, плотность, давление и пр.:
Подробные сведения на сайте ChemicalStudy.ru
100 | Общие сведения | |
101 | Название | Цинк |
102 | Прежнее название | |
103 | Латинское название | Zincum |
104 | Английское название | Zinc |
105 | Символ | Zn |
106 | Атомный номер (номер в таблице) | 30 |
107 | Тип | Металл |
108 | Группа | Амфотерный, переходный, цветной металл |
109 | Открыт | Известен с глубокой древности |
110 | Год открытия | до 1000 года до н. э. |
111 | Внешний вид и пр. | Хрупкий металл голубовато-белого цвета |
112 | Происхождение | Природный материал |
113 | Модификации | |
114 | Аллотропные модификации | |
115 | Температура и иные условия перехода аллотропных модификаций друг в друга | |
116 | Конденсат Бозе-Эйнштейна | |
117 | Двумерные материалы | |
118 | Содержание в атмосфере и воздухе (по массе) | 0 % |
119 | Содержание в земной коре (по массе) | 0,0078 % |
120 | Содержание в морях и океанах (по массе) | 5,0·10-7 % |
121 | Содержание во Вселенной и космосе (по массе) | 0,00003 % |
122 | Содержание в Солнце (по массе) | 0,0002 % |
123 | Содержание в метеоритах (по массе) | 0,018 % |
124 | Содержание в организме человека (по массе) | 0,0033 % |
200 | Свойства атома | |
201 | Атомная масса (молярная масса) | 65,38(2) а. е. м. (г/моль) |
202 | Электронная конфигурация | 1s2 2s2 2p6 3s2 3p6 3d10 4s2 |
203 | Электронная оболочка | K2 L8 M18 N2 O0 P0 Q0 R0 |
204 | Радиус атома (вычисленный) | 142 пм |
205 | Эмпирический радиус атома* | 135 пм |
206 | Ковалентный радиус* | 122 пм |
207 | Радиус иона (кристаллический) | Zn2+ 74 (4) пм, 88 (6) пм, 104 (8) пм (в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле) |
208 | Радиус Ван-дер-Ваальса | 139 пм |
209 | Электроны, Протоны, Нейтроны | 30 электронов, 30 протонов, 35 нейтронов |
210 | Семейство (блок) | элемент d-семейства |
211 | Период в периодической таблице | 4 |
212 | Группа в периодической таблице | 12-ая группа (по старой классификации – побочная подгруппа 2-ой группы) |
213 | Эмиссионный спектр излучения | |
300 | Химические свойства | |
301 | Степени окисления | -2, 0, +1, +2 |
302 | Валентность | II |
303 | Электроотрицательность | 1,65 (шкала Полинга) |
304 | Энергия ионизации (первый электрон) | 906,4 кДж/моль (9,394197(6) эВ) |
305 | Электродный потенциал | Zn2+ + 2e– → Zn, Eo = -0,763 В |
306 | Энергия сродства атома к электрону | 0 кДж/моль |
400 | Физические свойства | |
401 | Плотность* | 7,14 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело), 6,57 г/см3 (при температуре плавления 419,53 °C и иных стандартных условиях, состояние вещества – жидкость), 6,4 г/см3 (при 800 °C и иных стандартных условиях, состояние вещества – жидкость) |
402 | Температура плавления* | 419,53 °C (692,68 K, 787,15 °F) |
403 | Температура кипения* | 907 °C (1180 K, 1665 °F) |
404 | Температура сублимации | |
405 | Температура разложения | |
406 | Температура самовоспламенения смеси газа с воздухом | |
407 | Удельная теплота плавления (энтальпия плавления ΔHпл)* | 7,32 кДж/моль |
408 | Удельная теплота испарения (энтальпия кипения ΔHкип)* | 115 кДж/моль |
409 | Удельная теплоемкость при постоянном давлении | |
410 | Молярная теплоёмкость* | 25,47Дж/(K·моль) |
411 | Молярный объём | 9,2 см³/моль |
412 | Теплопроводность | 116 Вт/(м·К) (при стандартных условиях), 116 Вт/(м·К) (при 300 K) |
500 | Кристаллическая решётка | |
511 | Кристаллическая решётка #1 | |
512 | Структура решётки | Гексагональная плотноупакованная |
513 | Параметры решётки | a = 2,6648 Å, c = 4,9468 Å |
514 | Отношение c/a | 1,856 |
515 | Температура Дебая | 234 K |
516 | Название пространственной группы симметрии | P63/mmc |
517 | Номер пространственной группы симметрии | 194 |
900 | Дополнительные сведения | |
901 | Номер CAS | 7440-66-6 |
Примечание:
205* Эмпирический радиус атома цинка согласно и составляет 134 пм и 138 пм соответственно.
206* Ковалентный радиус цинка согласно и составляет 122±4 пм и 125 пм соответственно.
401* Плотность цинка согласно и составляет 7,133 г/см3 (при 0 °C/20 °C и иных стандартных условиях, состояние вещества – твердое тело), согласно составляет 6,59 г/см3 (при 500 °C и иных стандартных условиях, состояние вещества – жидкость).
402* Температура плавления цинка согласно и составляет 419,6 °С (692,75 K, 787,28 °F) и 419,5 °С (692,65 K, 787,1 °F).
403* Температура кипения цинка согласно и составляет 906,2 °С (1179,35 K, 1663,16 °F) и 906 °C (1179,15 К, 1662,8 °F) соответственно.
407* Удельная теплота плавления (энтальпия плавления ΔHпл) цинка согласно и составляет 7,28 кДж/моль и 7,24 кДж/моль соответственно.
408* Удельная теплота испарения (энтальпия кипения ΔHкип) цинка согласно и составляет 114,8 кДж/моль и 115,3 кДж/моль соответственно.
410* Молярная теплоёмкость цинка согласно составляет 25,4 Дж/(K·моль).
Цинк Zincum происхождение названия
Откуда произошло название Zincum … Слово «цинк» впервые встречается в трудах Парацельса, который назвал этот металл словом «zincum» или «zinken» в книге Liber Mineralium I. Слово, вероятно, восходит к нем. Zinke, означающее «зубец» (кристаллиты металлического цинка похожи на иглы)
Распространённость Цинк Zincum
Как любой хим. элемент имеет свою распространенность в природе, Zn …
Цинк в природе как самородный металл не встречается.
Получение Цинк Zincum
Zincum — получение элемента Цинк добывают из полиметаллических руд, содержащих 1—4 % Zn в виде сульфида, а также Cu, Pb, Ag, Au, Cd, Bi. Руды обогащают селективной флотацией, получая цинковые концентраты (50—60 % Zn) и одновременно свинцовые, медные, а иногда также пиритные концентраты. Цинковые концентраты обжигают в печах в кипящем слое, переводя сульфид цинка в оксид ZnO; образующийся при этом сернистый газ SO2 расходуется на производство серной кислоты. Чистый цинк из оксида ZnO получают двумя способами.
По пирометаллургическому (дистилляционному) способу, существующему издавна, обожжённый концентрат подвергают спеканию для придания зернистости и газопроницаемости, а затем восстанавливают углём или коксом при 1200—1300 °C: ZnO + С = Zn + CO. Образующиеся при этом пары металла конденсируют и разливают в изложницы. Сначала восстановление проводили только в ретортах из обожжённой глины, обслуживаемых вручную, позднее стали применять вертикальные механизированные реторты из карборунда, затем — шахтные и дуговые электропечи; из свинцово-цинковых концентратов цинк получают в шахтных печах с дутьём.
Производительность постепенно повышалась, но цинк содержал до 3 % примесей, в том числе ценный кадмий. Дистилляционный цинк очищают ликвацией (то есть отстаиванием жидкого металла от железа и части свинца при 500 °C), достигая чистоты 98,7 %. Применяющаяся иногда более сложная и дорогая очистка ректификацией дает металл чистотой 99,995 % и позволяет извлекать кадмий.
Основной способ получения цинка — электролитический (гидрометаллургический). Обожжённые концентраты обрабатывают серной кислотой; получаемый сульфатный раствор очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу в ваннах, плотно выложенных внутри свинцом или винипластом. Цинк осаждается на алюминиевых катодах, с которых его ежесуточно удаляют (сдирают) и плавят в индукционных печах. Обычно чистота электролитного цинка — 99,95 %, полнота извлечения его из концентрата (при учёте переработки отходов) — 93—94 %.
Цинк — общая характеристика элемента, химические свойства цинка и его соединений
Цинк — элемент побочной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 30. Обозначается символом Zn (лат. Zincum). Простое вещество цинк при нормальных условиях — хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка).
В четвертом периоде цинк является последним d-элементом, его валентные электроны 3d104s2.
В образовании химических связей участвуют только электроны внешнего энергетического уровня, поскольку конфигурация d10 является очень устойчивой. В соединениях для цинка характерна степень окисления +2.
Цинк – химически активный металл, обладает выраженными восстановительными свойствами, по активности уступает щелочно-земельным металлам. Проявляет амфотерные свойства.
Взаимодействие цинка с неметаллами
При сильном нагревании на воздухе сгорает ярким голубоватым пламенем с образованием оксида цинка: 2Zn + O2 → 2ZnO.
При поджигании энергично реагирует с серой: Zn + S → ZnS.
С галогенами реагирует при обычных условиях в присутствии паров воды в качестве катализатора: Zn + Cl2 → ZnCl2.
При действии паров фосфора на цинк образуются фосфиды: Zn + 2P → ZnP2 или 3Zn + 2P → Zn3P2.
С водородом, азотом, бором, кремнием, углеродом цинк не взаимодействует.
Взаимодействие цинка с водой
Реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода: Zn + H2O → ZnO + H2.
Взаимодействие цинка с кислотами
В электрохимическом ряду напряжений металлов цинк находится до водорода и вытесняет его из неокисляющих кислот: Zn + 2HCl → ZnCl2 + H2; Zn + H2SO4 → ZnSO4 + H2.
Взаимодействует с разбавленной азотной кислотой, образуя нитрат цинка и нитрат аммония: 4Zn + 10HNO3 → 4Zn(NO3)2 + NH4NO3 + 3H2O.
Реагирует с концентрированными серной и азотной кислотами с образованием соли цинка и продуктов восстановления кислот: Zn + 2H2SO4 → ZnSO4 + SO2 + 2H2O; Zn + 4HNO3 → Zn(NO3)2 + 2NO2 + 2H2O
Взаимодействие цинка со щелочами
Реагирует с растворами щелочей с образованием гидроксокомплексов: Zn + 2NaOH + 2H2O → Na2 + H2
при сплавлении образует цинкаты: Zn + 2KOH → K2ZnO2 + H2.
Взаимодействие с аммиаком
С газообразным аммиаком при 550–600°С образует нитрид цинка: 3Zn + 2NH3 → Zn3N2 + 3H2; растворяется в водном растворе аммиака, образуя гидроксид тетраамминцинка: Zn + 4NH3 + 2H2O → (OH)2 + H2.
Взаимодействие цинка с оксидами и солями
Цинк вытесняет металлы, стоящие в ряду напряжения правее него, из растворов солей и оксидов: Zn + CuSO4 → Cu + ZnSO4; Zn + CuO → Cu + ZnO.
Оксид цинка (II) ZnO
– белые кристаллы, при нагревании приобретают желтую окраску. Плотность 5,7 г/см3, температура возгонки 1800°С. При температуре выше 1000°С восстанавливается до металлического цинка углеродом, угарным газом и водородом: ZnO + C → Zn + CO; ZnO + CO → Zn + CO2; ZnO + H2 → Zn + H2O.
С водой не взаимодействует. Проявляет амфотерные свойства, реагирует с растворами кислот и щелочей: ZnO + 2HCl → ZnCl2 + H2O; ZnO + 2NaOH + H2O → Na2.
При сплавлении с оксидами металлов образует цинкаты: ZnO + CoO → CoZnO2.
При взаимодействии с оксидами неметаллов образует соли, где является катионом: 2ZnO + SiO2 → Zn2SiO4, ZnO + B2O3 → Zn(BO2)2.
Гидроксид цинка (II) Zn(OH)2
– бесцветное кристаллическое или аморфное вещество. Плотность 3,05 г/см3, при температуре выше 125°С разлагается: Zn(OH)2 → ZnO + H2O.
Гидроксид цинка проявляет амфотерные свойства, легко растворяется в кислотах и щелочах: Zn(OH)2 + H2SO4 → ZnSO4 + 2H2O; Zn(OH)2 + 2NaOH → Na2;
также легко растворяется в водном растворе аммиака с образованием гидроксида тетраамминцинка: Zn(OH)2 + 4NH3 → (OH)2.
Получается в виде осадка белого цвета при взаимодействии солей цинка со щелочами: ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl.
Как примеси изменяют свойства цинка
Производители ограничивают содержание кадмия, олова и свинца в литейных сплавах цинка, чтобы подавить межкристаллитную коррозию.
Олово — вредная примесь. Металл не растворяется и выделяется из расплава — способствует ломкости цинковых отливок. Кадмий напротив — растворяется в цинке и снижает его пластичность в горячем состоянии. Свинец увеличивает растворимость металла в кислотной среде.
Железо повышает твердость цинка, но снижает его прочность. Вместе с тем оно усложняет процесс заполнения форм при литье.
Медь увеличивает твердость цинка, но уменьшает его пластичность и стойкость при коррозии. Содержание меди также мешает рекристаллизации цинка.
Наиболее вредная примесь — мышьяк. Даже при небольшом ее количестве металл становится хрупким и менее пластичным.
Чтобы избежать растрескивания кромок при горячей прокатке цинка, содержание сурьмы не должна быть выше 0,01%. В горячем состоянии она увеличивает твердость цинка, лишая его хорошей пластичности.
Характеристика сульфата цинка
Рассмотренные нами ранее химические свойства цинка, в частности, его реакции с разбавленной сульфатной кислотой, подтверждают образование средней соли – сернокислого цинка. Это бесцветные кристаллы, нагревая которые до 600° и выше, можно получить оксосульфаты и трехокись серы. При дальнейшем нагревании сернокислый цинк преобразуется в оксид цинка. Соль растворима в воде и глицерине. Вещество выделяют из раствора при температуре до 39°C в виде кристаллогидрата, формула которого ZnSO4×7H2O. В этом виде его называют цинковым купоросом.
В интервале температур 39°-70° получают шестиводную соль, а выше 70° в составе кристаллогидрата остается только одна молекула воды. Физико-химические свойства сульфата цинка позволяют применять его в качестве отбеливателя при изготовлении бумаги, в виде минерального удобрения в растениеводстве, как подкормку в рационе домашних животных и птицы. В текстильной промышленности соединение используют в производстве вискозной ткани, в окрашивании ситца.
Сернокислый цинк входит также в состав раствора электролита, применяемого в процессе гальванического покрытия слоем цинка железных или стальных изделий диффузным способом или методом горячего оцинкования. Слой цинка в течение длительного времени защищает такие конструкции от коррозии. Учитывая химические свойства цинка, нужно отметить, что в условиях высокой солености воды, значительных колебаний температуры и влажности воздуха оцинкование не дает желаемого эффекта. Поэтому в промышленности нашли широкое применение сплавы металла с медью, магнием и алюминием.
Цинка полезные свойства. Цинк (Zn, Zincum)
История цинка
Цинк в чистом виде впервые выделил Уильям Чемпион в 1738 году, хотя латунь (сплав меди с цинком) использовали в Древнем Египте и Древней Греции (calorizator). Иногда первооткрывателем цинка называют немца С. Маргграфа, который в 1746 году разработал аналогичный способ выработки цинка и описал его более подробно, чем Чемпион. Названием цинк обязан Парацельсу, в чьих трудах встречаются слова zincum и zinken , которыми назван металл, видимо, из-за схожести его кристаллитов с иглами ( zinke – зубец).
Общая характеристика цинка
Цинк является элементом побочной подгруппы II группы IV периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 30 и атомную массу 65,39. Принятое обозначение – Zn (от латинского Zincum ).
Нахождение в природе
Цинк достаточно распространённый элемент, он содержится в земной коре, практически во всех водных ресурсах Мирового Океана и во многих живых организмах. На сегодняшний день известно более 60-ти минералов цинка (сфалерит, цинкит, каламин и др.). крупные месторождения цинка обнаружены в Австралии, Боливии, Иране и Казахстане.
Физические и химические свойства
Цинк является хрупким, пластичным переходным металлом, имеет бело-голубоватый цвет, на воздухе покрывается слоем оксида цинка, что приводит к потускнению. При высоких температурах сгорает, образуя белый оксид цинка.
Суточная потребность в цинке
В сутки организм взрослого здорового человека должен получать от 9 до 11 мг цинка, дети – чуть меньше, от 2 до 8 мг, женщины в период беременности и кормления грудью – от 11 до 13 мг.
Продукты питания богатые цинком
Основные поставщики цинка – продукты питания, важный для жизнедеятельности организма элемент содержится в зелёных листовых овощах, брокколи , цветной капусте и редисе , моркови и кукурузе , зелёном луке , фасоли , горохе и чечевице , авокадо и ягодах, арахисе , кокосе , грецких и кедровых орехах , кунжуте , пшенице , овсянке и рисе . Присутствует цинк и в продуктах животного происхождения – свинине и баранине , говядине и индейке , мясе утки и говяжьем языке , морепродуктах и рыбе, плавленом сыре и яичном желтке .
Полезные свойства цинка и его влияние на организм
Функции и полезные свойства цинка:
- участие в формировании костных тканей,
- предупреждение диабета,
- препятствие появлению эпилепсии,
- обеспечение быстрого заживления ран,
- пособничество всасыванию витамина А,
- улучшение состояния волос,
- положительное влияние на умственные способности человека,
- профилактика возникновения артрита и ревматизма.
Взаимодействие с другими
Цинк необходим для метаболизма витамина E , витамин А действует только в присутствии цинка. Витамин С и цинк — хорошее средство против катаров и многих вирусных заболеваний.
Признаки нехватки цинка
Нехватка цинка в организме человека характеризуется следующими симптомами:
- расстройства деятельности желудочно-кишечного тракта,
- хрупкость ногтей и появление на них белых пятен,
- истощение и выпадение волос,
- потеря чувства вкуса и аппетита,
- незаживление мелких ран,
- нервозность, быстрая утомляемость,
- снижение памяти.
Признаки избытка цинка
Избыточное содержание цинка в организме человека как правило обусловлено приёмом БАДов и препаратов цинка, характеризуется головными болями, приступами слабости и тошнотой.
Применение цинка в жизни
Цинк в чистом виде используется как восстановитель благородных металлов, как защита стали от коррозии, для производства аккумуляторов, в полиграфической промышленности, в медицине, производстве различных сплавов, резиновых шин и масляных красок.
Копирование данной статьи целиком или частично запрещено.
Оксид цинка
Белый пористый порошок, желтеющий при нагревании и возвращающий свой первоначальный цвет при охлаждении – это окись металла. Химические свойства оксида цинка, уравнения реакций его взаимодействия с кислотами и щелочами подтверждают амфотерный характер соединения. Так, вещество не может реагировать с водой, но взаимодействует как с кислотами, так и со щелочами. Продуктами реакций будут средние соли (в случае взаимодействия с кислотами) или комплексные соединения – тетрагидроксоцинкаты.
Оксид цинка применяют в производстве белой краски, которую называют цинковыми белилами. В дерматологии вещество входит в состав мазей, присыпок и паст, оказывающих на кожу противовоспалительное и подсушивающее действие. Большая же часть производимого оксида цинка применяется в качестве наполнителя для резины. Продолжая изучать химические свойства цинка и его соединений, рассмотрим гидроксид Zn(OH)2.
Производство цинка
Как было сказано выше, чистого вида данного элемента в природе нет. Он добывается из иных пород, таких как руда – кадмий, галлий, минералы – сфалерит. Металл получают на заводе. Каждый завод имеет свои отличительные особенности производства, поэтому оборудование для получения чистого материала различно. Оно может быть таким:
- Роторы, расположенные вертикально, электролитные.
- Специальные печи с достаточно высокой температурой для обжига, а также специальные электропечи.
- Транспортёры и ванны для электролиза.
В зависимости от принимаемого метода добычи металла, задействовано соответствующее оборудование.
Цинк — взаимодействия, влияющие на уровень в организме
Нельзя не упомянуть об часто применяемых препаратах, снижающих уровень цинка. Люди, принимающие их, должны знать об этом и принимать добавки под наблюдением врача.
Ниже представлен обзор взаимодействий:
- любые агенты, снижающие количество соляной кислоты в желудке, то есть обычно используемые ингибиторы протонной помпы (например, омепразол, пантопразол, эзомепразол и т. д.) и антагонисты рецепторов H2 (ранитидин, фамотидин), а также антациды;
- алкоголь препятствует всасыванию цинка в кишечнике, увеличивает его выведение через почки и повреждает клетки печени;
- пеницилламин (используемый при РА) может увеличивать выведение цинка и меди из организма;
- холестирамин и колестипол мешают абсорбции;
- препараты, применяемые при остеопорозе, т.е. пероральные бисфосфонаты (алендронат, этидронат, ризедронат) образуют комплексы с цинком;
- цисплатин, используемый в химиотерапии, вызывает дефицит цинка;
- этамбутол (используется при туберкулезе) образует комплекс с медью и цинком;
- препараты, понижающие артериальное давление (каптоприл, эналаприл), комплексный цинк и увеличивающие выведение — добавки на временной дистанции;
- гидрохлоротиазидные и фуросемидные диуретики повышают выведение цинка;
- кортикостероиды усиливают выведение цинка с мочой, увеличивают потребление цинка в организме;
- ципрофлоксацин и тетрациклины комплексного цинка, что снижает их действие (интервал);
- контрацепция вызывает уменьшение количества витамина B6 и, таким образом, изменение метаболизма триптофана: повышение уровня ксантогенной кислоты, которая образуется с комплексами цинка, выводимыми почками, в результате чего уровень цинка в организме падает;
- Вальпроевая кислота (эпилепсия) вызывает нарушения содержания цинка и снижение уровня в плазме.
ДИЕТИЧЕСКИЕ ИСТОЧНИКИ ЦИНКА
Примеры (на 100 г продукта):
- печень телятины содержит около 8,4 мг;
- печень свиная 4,5 мг;
- тыквенные семечки 7,5 мг;
- какао 6,5 мг;
- жирный эменталер 3,7 мг;
- ростбиф 3,7 мг;
- гречка 3,5 мг;
- миндаль 3,19 мг;
- овсянка 3,1 мг;
- фундук 2,44 мг;
- темный шоколад 2,43 мг;
- яйца 1,29 мг.
Во многих случаях это рекомендуется, но стоит проконсультироваться с профессионалом о количестве
Стоит обратить внимание на отсутствие дублирования препаратов с содержанием цинка, чтобы не передозировать, а также позаботиться о других минералах. Органические соли цинка лучше усваиваются и переносят (глюконат, гистидат, цитрат, лактат, пиколинат), чем неорганические соли (сульфат или оксид)