Кислородный редуктор

Правила безопасной эксплуатации

Учитывая взрыво- и пожароопасность кислорода, такие изделия согласно нормам ГОСТ 12.2.008-75 должны периодически подвергаться тщательному регламентному обслуживанию. Применительно к кислородным редукторам типа БКО 50-4 и БКО 50-5 правила обслуживания включают в себя:

  1. Проверку хода регулирующего винта/маховика от одного крайнего положения в другое: оно должно выполняться плавно, и без заеданий.
  2. Присоединительные элементы не должны иметь внешних механических повреждений – трещин, царапин, а также быть очищенными от масел, жиров и загрязнений.
  3. Переодическая проверка манометров не должна быть реже одного раза в год. Критерием необходимости в проверке считается повышенная инерционность стрелки прибора.
  4. В качестве уплотняющих элементов – прокладок, ниппелей и пр. – не могут использоваться детали, не соответствующие условиям эксплуатации кислородных редукторов.

  1. Перед каждым применением проверяется (по манометру) герметичность соединений, утечка кислорода из баллона недопустима.
  2. При присоединённом к редуктору баллоне с кислородом запрещается выполнять какую-либо регулировку.
  3. Согласно правилам охраны труда между редуктором для кислородного баллона и остальной газосварочной аппаратурой стоит предусматривать монтаж предохранительных устройств, в том числе и для гашения пламени. Это могут быть обратные клапаны, рассчитанные на давление в баллоне, а также предохранительные затворы.

Цена на кислородный редуктор определяется его конструкцией и эксплуатационными возможностями. Для одноступенчатых редукторов цена колеблется в пределах 1800…2000 руб. (БКО 50-4) и 1100…1200 руб. (БКО 50-5). Двухступенчатые устройства (например, БКД-25 или Multi-Stage RG S2 O2 чешского производства) стоят значительно дороже — 11000…12000 руб.

Эксплуатация редуктора.

До присоединения кислородного редуктора необходимо тщательно проверить, нет ли на штуцере и накидной гайке следов масла и т. п. При обнаружении следов жировых веществ редуктор надо промыть в каком- либо растворителе (например, в авиационном бензине).

Далее необходимо проверить исправность резьбы накидной гайки, очистить ее от грязи и пыли, а также проверить наличие и исправность фибровой (для кислородных редукторов) или кожаной (для ацетиленовых редукторов) прокладки, от которой зависит плотность соединения редуктора с вентилем.

После продувания кислородного вентиля баллона или магистрали для удаления из них грязи или стружки, которые могут попасть в редуктор и испортить его клапан, к штуцеру вентиля привертывается и закрепляется ключом накидная гайка кислородного редуктора.

Точно так же необходимо продуть вентиль ацетиленового баллона до присоединения к нему ацетиленового редуктора.

До пуска газа в редуктор его регулирующий винт должен быть вывернут до полного ослабления нажимной пружины, чтобы при открывании вентиля баллона редуктор не мог быть поврежден. Запорный вентиль на редукторе должен быть открыт. К шланговому ниппелю редуктора присоединяют шланг и укрепляют его прочно хомутиками или мягкой проволокой.

Для пуска газа в редуктор необходимо плавно открыть вентиль баллона на пол-оборота маховичка. Если при этом ненормальностей не наблюдается, то вентиль баллона следует открыть до отказа и вращением нажимного регулирующего винта редуктора по часовой стрелке установить по манометру необходимое рабочее давление. Величина рабочего давления кислорода устанавливается при открытом вентиле резака.

Когда же вследствие наличия масла или резкого пуска кислорода произойдет вспышка или сильное нагревание редуктора, необходимо быстро закрыть вентиль баллона, а редуктор снять и отправить в ремонт.

После установления рабочего давления надо проверить, нет ли утечки газа в местах соединений, по резьбе манометров и т. д. Пропуски газа опасны, так как ацетилен и другие горючие газы образуют с воздухом взрывчатые смеси.

После проверки резак зажигают и регулируют пламя.

В процессе работы необходимо следить, чтобы в редукторе не появлялось утечки, замерзания и т. д.

При прекращении работы на 2—3 мин. можно закрыть только вентили на резаке. Если же работа прекращается на 10—15 мин., то помимо вентилей резака закрывают и запорный вентиль редуктора, не изменяя положения регулирующего винта. При перерывах в работе более 10—15 мин. следует дополнительно вывертыванием регулирующего винта ослабить нажимную пружину.

При длительных перерывах и по окончании работы закрывается вентиль баллона или магистрали и полностью выпускается оставшийся в редукторе газ. Затем вращением регулирующего винта против часовой стрелки ослабляется нажимная пружина.

Редуктор кислородный медицинский

В отличие от редукторов для газорезки, медицинские редукторы выпускаются только прямого действия, имеющие положение крана «вверх». Они намного меньше в размерах и соответственно, легче. Кроме того соединяется с баллоном при помощи как накидной гайки, так и прокладки. Газ поступает или через ниппель или, если его нет, через вентиль. Если это устройство для газовой смеси азота с кислородом, используется в конструкции и электрический подогреватель газа. Расход кислорода или закиси азота происходит более плавно, на счет конструкции и может выдавать давление 25 л/ минуту, в случаях применения в реанимации и 7 л/минуту для облегчения дыхания больного в палате или специальном кабинете.

Изготавливаются медицинские редукторы согласно ТУ -84-379, у них должны отсутствовать детали из алюминия, приводящие к воспламенению прибора в случае, если адиабатическое сжатие превысит норму.

Поэтому эти приборы не могут быть взаимозаменяемыми.

Предназначение кислородного редуктора

Редуктор кислородный, фото которого вы можете видеть в нашей статье, предназначен для обеспечения равномерного потока газа независимо от перепада давления в газопроводе или баллоне. Это очень важный элемент для газобаллонного оборудования. По его устройству судить можно о работоспособности всей системы. Если его не установить, то возможно возникновение так называемого эффекта запирания. Это означает, что расход газа достигнет критических показателей, и его скорость истечения будет равна скорости звука. Сила достигнет такого значения, что баллон станет прыгать в разные стороны.

Технические требования

Стальные сосуды под давлением объёмом 0,4–50 л используются без малого век. Отечественный ГОСТ 949-73 распространяется на ёмкости для транспортировки промежуточного хранения, технологической раздачи потребителям. Цельнотянутые бесшовные баллоны малого и среднего объёма из конструкционной стали 45Д и легированной 40ХГСА рассчитаны на рабочее давление 15 и 20 МПа для сосудов 50–20 л и 15 МПа для меньших, которые допускается выпускать с плоским дном.

Отличительная маркировка – жёлтая надпись эмалью «углекислота», «СО2» «двуокись углерода» по чёрному полю. Основные физические параметры и типоразмеры представлены в таблице:

Давление, МПа50 л, Сталь 45Д/30ХГСА40л Сталь 45Д/30ХГСА20 л Сталь 45Д
Ø, ммL, ммM, кгØ, ммL, ммM, кгØ, ммL, ммM, кг
152191685/166071,3/62,52191370/135058,5/51,521974032,3
201755/165093,0/62,51430/135076,5/51,577042,0

Сосуды меньших объёмов выполнены из стали 45Д, рабочее давление 15 МПа

Ø, мм12 л10 л8 л5 л4 л2 л
L, ммM, кгL, ммM, кгL, ммM, кгL, ммM, кгL, ммM, кгØ, L, ммM, кг
140102017,686513,071012,44758,54007,3108/3303,7

В комплектацию входят:

  • запорный вентиль кислородный с правой резьбой латунный;
  • предохранительные кольца из резины на цилиндрическую часть;
  • опорный башмак прямоугольной формы для устойчивости;
  • колпак предохранительный стальной либо формованный из неметаллов.

Эксплуатирующиеся баллоны проходят через 5 лет периодическую переаттестацию, включающую техосмотр и испытание избыточным давлением, превышающем рабочее на 50%. Информация с датой освидетельствования наносится ударными клеймами на зачищенную горловину, обрамляется жёлтой полосой по периметру.

Это «паспорт углекислотного баллона» с полным перечнем информации:

  • дата выпуска, переаттестации;
  • № баллона, присвоенный производителем;
  • литраж наполнения;
  • технологическое гидродавление;
  • марка стали и физические величины веса и размеров.

Как работает редуктор для баллона:

1 Прямой редуктор

Обычный простой редукционный аппарат для газа, состоит из двух камер c областью повышенного и низкого давления разделенных между собой резиновой мембраной. Кроме того, “редукционник” оборудован входным и выходным штуцером. Современные приборы сконструированы так, что сильфонная подводка вкручивается прямо в редуктор. Все чаще можно встретить газовый редуктор с третьим штуцером, предназначенным для монтажа мономера.

После подачи газа по шлангу и далее через штуцер он поступает внутрь камеры. Создаваемое газовое давление стремится открыть клапан. С обратной стороны на клапан давит запорная пружина, возвращая его назад на специальное посадочное место, называемое в простонародье “седло”. Возвращаясь на свое место, клапан препятствует бесконтрольному поступлению газа высокого давления из баллона.

Мембрана

Вторая действующая сила внутри редуктора является резиновая мембрана, разделяющая устройство на область высокого и низкого давления. Мембрана выступает “помощником” высокому давлению и в свою очередь стремится приподнять клапан из седла, открывая проход. Таким образом, мембрана находится между двух противоборствующих сил. Одну поверхность поддавливает нажимная пружинка (не путайте с возвратной пружиной клапана), которая хочет открыть клапан, с другой стороны, на нее давит уже прошедший газ в зону низкого давления.

По мере выхода газа из редуктора к источнику потребления, давление в камере рабочего пространства понижается, давая возможность распрямиться нажимной пружинке. Она то и начинает выталкивать клапан из седла, снова позволяя наполнить прибор газом. Соответственно давление ползет вверх, надавливая на мембрану уменьшая размер нажимной пружинки. Клапан перемещается назад в седло суживая щель, уменьшая наполнение газом редуктор. Далее процесс повторяется до тех пор, пока давление не выравнивается до установленного значения.

Следует признать, что редукторы для газовых баллонов прямого типа ввиду сложной конструкции, не пользуются повышенным спросом, гораздо более широкое распространение нашли редукторы обратного типа, к слову сказать они считаются приборами с высокой степенью безопасности. 

2 Обратный редуктор

Функционирование прибора, заключается в противоположном действии описанном выше. Сжиженное голубое топливо подается в камеру где создается высокое давление. Баллонный газ накапливается и мешает клапану открыться. Чтобы обеспечить поступление газа в бытовой прибор, требуется повернуть регулятор по направлению правой резьбы.

С обратной стороны ручки регулятора находится длинный винт, который накручиваясь надавливает на нажимную пружинку. Сжимаясь она начинает изгибать эластичную мембрану в верхнее положение. Таким образом, передаточный диск посредством штока, оказывает давление на обратную пружинку. Клапан приходит в движение, начинает приоткрываться, увеличивая зазор. Голубое топливо устремляется в щель и заполняет рабочую камеру с низким давлением.

В рабочей камере, в газовом шланге и в баллоне давление начинает возрастать. Под действием давления осуществляется распрямление мембраны, содействует ей в этом постоянно сжимающаяся пружинка. В результате, механических взаимодействий передаточный диск опускается ослабляя обратную пружину, которая стремится вернуть клапан на свое посадочное место. Закрывая зазор, естественно поступление газа из баллона в рабочую камеру ограничивается. Далее с понижением давления в сильфоновой подводке запускается обратный процесс.

Одним словом, в результате сдержек и противовесов, качели удается уравновесить и газовый редуктор поддерживает в автоматическом режиме сбалансированное давление, без резких скачков и перепадов.

Предназначение кислородного редуктора

Кислород – это неотъемлемый компонент так называемой газовой сварки или резки металла. К месту выполнения работ его доставляют в баллонах выполненных из стали и окрашенных в голубой цвет.

Баллон кислородный

Для обеспечения подачи кислорода под рабочим давлением используют редукторы. В соответствии с ГОСТ 13861-89 эти устройства маркируются следующим образом – БКО, СКО, РКО. Первая аббревиатура обозначает то, что редуктор используют для установки на кислородные баллоны, одноступенчатый (Д – двухступенчатый). Вторая – это сетевое Изделие, и третья — рамповое.

Выпускают несколько видов этих устройств – БКО 25 и БКО 50. Первый тип обеспечивает подачу кислорода до 25 кубометров в час, второй 50. Предельный параметр рабочего давления первой модели равен 0,8 МПа, у второй 1,25 МПа.

Для присоединения кислородного редукционного устройства применяют накидную гайку.

Редуктор использует в работе следующие принципы:

  1. Газ проходит через фильтр и подается в камеру высокого давления. Вращение регулятора передает усилие установленной пружины посредством диска, мембраны и толкателя непосредственно на клапан. Именно он и регулирует поступление кислорода в рабочий объем.
  2. Узел, в котором происходит изменение давления, представляет собой отдельную сборочную единицу, состоящая из седла, клапана с пружиной и фильтрационного устройства ЭФ-5. Для повышения безопасности на корпусе устройства вмонтирован клапан, предназначенный для стравливания газа по достижении критического уровня давления в рабочей камере от 16,5 до 25 кгс на квадратный сантиметр.

Манометр кислородного редуктора

В составе кислородного редуктора применяют манометры, один показывает значение давления в баллоне (сети), а на второй его параметр на выходе. В зону сварки кислородную смесь подают через рукав диаметром 6 или более мм. Рукав подсоединяют к штуцеру, на другом конце устанавливают резак или горелку.

Возможна ли взаимозаменяемость

Некоторые виды сварочных редукторов взаимозаменяемы, но далеко не все. Так, вместо специализированного редуктора СО2 для сварки допустимо использовать кислородный, но обратную замену производить категорически нельзя.

Кислород — химически активное вещество, сильнейший окислитель, поэтому для работы с ними используются специальные металлы и сплавы. К тому же кислород закачивается в газовые баллоны под давлением, превышающим этот же параметр для углекислоты более чем в 2 раза.

Сварочный редуктор для углекислого газа, накрученный на кислородный баллон, может продержаться, в зависимости от его качества, от нескольких часов до пары недель. Но в нем неминуемо произойдет полное разрушение уплотняющих мембран — основного элемента конструкции, вследствие чего прибор начнет травить.

Аналогичная резьба и в баллонах ля резки и сварки. При этом кислородный редуктор имеет правую резьбу. Кислород не горит сам по себе, но поддерживает горение. В некоторых условиях он взрывоопасен.

Кислородный редуктор, используемый во время сварки с углекислотным баллоном, ждет другая угроза. Углекислота вызывает промерзание контактирующих с ней деталей до -60 °C. Поскольку регулятор давления, предназначенный для кислорода, и не должен выдерживать такого режима работы, он также начнет разрушаться.

Металлическая основа

Учитывая тот фактор, что сталь инертна к углекислоте, сами баллоны изготавливают из трубы этого материала различного по диаметру

Крайне важно, чтобы корпус был окрашен в темный цвет. При этом в обязательном порядке устанавливается дата аттестации и код предприятия, которое проводило заправку и проверку. Весовые показатели баллонов позволяют понять, что сам корпус достаточно тяжелый в сравнении с наполнением

Например, баллон на 5 литров характеризуется по массе – 8,5 кг. на 10 литров – 15 кг

Весовые показатели баллонов позволяют понять, что сам корпус достаточно тяжелый в сравнении с наполнением. Например, баллон на 5 литров характеризуется по массе – 8,5 кг. на 10 литров – 15 кг.

Согласно химическим исследованиям и лабораторным мониторингам, углекислота в баллоне – один из самых безопасных газов, поэтому его применяют фактически на открытых площадках, например, для налива лимонада или пива с кеговой бочки. Для транспортировки используют грузовые автомобили, минимум типа Пикап для обеспечения горизонтального режима. Для подъезда в труднодоступные места – металлические тележки.

Виды и характеристики. Редуктор БКО 50-4 и БКО 50-5

По своим техническим параметрам редукторы для кислородного баллона подразделяются на две группы – рамповые и постовые. Рамповые редукторы отличаются повышенной пропускной способностью – от 100…120 м3/ч, а потому используются для питания группы сварочных постов, либо для сварочных работ с большими объёмами. Постовые редукторы – индивидуального назначения, они обеспечивают расход кислорода в количествах 5…25 м3/ч (меньшие значения соответствуют меньшим конечным давлениям газа).

Корпуса газовых редукторов внешне однотипны, поэтому при изготовлении их окрашивают в определённые цвета (для кислородных редукторов это голубой цвет).

ГОСТ 13861 предусматривает следующие исполнения кислородных редукторов:

  1. Баллонные, типа БКО, БКД и БПО.
  2. Сетевые, типа СКО, САО, СПО, СМО.
  3. Универсальные (У).
  4. Рамповые (РКЗ, РАД, РПД).
  5. Центральные (ЦКЗ).

Основной технической характеристикой кислородного редуктора является его пропускная способность и значение рабочего давления газа в баллоне. Например, кислородный редуктор типа БКО 50-4 означает, что агрегат предназначен для подключения к баллону с кислородом, является одноступенчатым, и рассчитан для пропускной способности до 50 м³/ч при рабочем давлении газа 4 атмосферы. Соответственно, для кислородного редуктора БКО 50-5 допустимое значение рабочего давления составляет 5 атмосфер. Именно редукторы типа БКО чаще всего и применяются для индивидуальных постов газосварки.

Дополнительными эксплуатационными особенностями кислородных редукторов являются:

  • Число ступеней редуцирования. Выпускаются одноступенчатые устройства, регулятором давления в которых выступает либо пружина, либо иной узел, и двухступенчатые, где регулирование давления происходит постепенно, при помощи промежуточных пневматических камер. Двухступенчатые редукторы обеспечивают более надёжную работу сварочного поста в условиях низких температур, более стабильны по своим характеристикам, но отличаются конструктивной сложностью и, следовательно, увеличенной ценой;
  • Способ присоединения. Используется накидная гайка, а не хомут, поскольку взрывоопасность кислорода требует особых требований к герметичности;
  • Климатическое исполнение. Требование к надёжности работы регулятора тока особенно возрастают, когда газосварка ведётся не только при низких температурах, но и с большими объёмами. При больших расходах давление кислорода быстро снижается, что сопровождается увеличением объёма газа, остающегося в баллоне. Этот физический процесс ускоряет охлаждение газа и редуктора, в результате устройство может потерять работоспособность.

Принципиальными отличиями двухступенчатого кислородного редуктора являются редуцирующий клапан повышенной точности и двухслойная мембрана увеличенной площади, которая изготавливается из высокопрочных синтетических каучуков. Такой материал нечувствителен к изменению внешней температуры, благодаря чему мембрана сохраняет свою работоспособность при отрицательных температурах и давлениях газа до 150…200 атмосфер.

Советы по выбору и правила использования

При выборе редуктора следует учитывать точку размещения. Особых объяснений не нужно, понятно, что рамповый или сетевой редуктор нельзя ставить на баллон. Нельзя ставить на кислородный баллон аргоновый или углекислотный редуктор. Удостоверьтесь в том, что возможное максимальное давление газа на входе не превышает допустимое для данного типа редуктора. При нарушении этого условия создаются предпосылки для аварийного разрушения изделия. Выбирайте устройство в соответствии с необходимым рабочим напряжением.

Сделать выбор между одноступенчатым и двухступенчатым редуктором несложно. В 99% случаев вам достаточно одной ступени. И только при специфических условиях эксплуатации может понадобиться две ступени снижения давления. Это обязательно будет оговорено в технической документации по технологическому процессу. То же самое и с климатическим исполнением: если вы работаете в нормальной климатической зоне, то климатическое исполнение вас совсем не будет интересовать.

Чтобы не нарваться на подделку, внимательно читайте маркировку на корпусе. Здесь должен быть чётко виден логотип производителя, марка изделия и дата выпуска. Сравните эти данные с указанными в документации на устройство.

Вопросы настройки и подготовки к работе оборудования были описаны выше. Добавим ещё несколько простых правил, необходимых для безопасной работы. В процессе работы необходимо постоянно следить за возможными утечками и замерзанием редуктора.

При кратковременной остановке работы достаточно закрыть вентиль на резаке. При остановках более 15 минут нужно вывернуть регулирующий винт, это предохранит от порчи регулирующую пружину. В конце рабочего дня рекомендуется снимать редуктор с баллона и укладывать в ящик.

Назначение кислородного редуктора

Технические устройства, работающие с кислородом, нуждаются в стабильном давлении на входе. Как правило, рабочее давление таких устройств составляет единицы кг/см2. К месту работы кислород доставляется либо по трубопроводу, либо в баллонах, где давление может доходить до нескольких сотен кг/см2. Например, рекомендованное давление в кислородном баллоне — 150 кг/см2.

Следует учитывать, что по мере расхода кислорода во время работы, давление в баллоне уменьшается. Назначение редуктора состоит в том, чтобы обеспечивать подачу на вход технических устройств кислорода с постоянным давлением, независимо от давления в баллоне или газовой магистрали.

Работа с манометром и редуктором.

В работе чаще всего используют манометр на кислородный редуктор обратного действия потому, что он имеет простую конструкцию и более компактные размеры. Устройство редуктора предусматривает наличие двух камер.

Первая – с высоким давлением оксигена, а вторая камера с низким. Так как первая камера напрямую соединена с баллоном, то давление в ней равняется давлению в баллоне. А вторая камера соединяется с горелкой и давление газа в горелке равняется давлению газа в камере низкого давления.

Между камерами расположен клапан. На него воздействуют 2 пружины и степень открытия клапана зависит от соотношения сжатия данных пружин. Соответственно, когда клапан открывается, то меняется давление во второй камере.

Перед началом работы с газовым баллоном необходимо убедиться, что все рукава правильно присоединены к редуктору. А сам редуктор работает исправно. Для этого нам нужно выкрутить регулировочный винт и закрыть на горелке вентиль расхода кислорода. При этом на манометре рабочего давления значение должно немного увеличиться, но не расти, что говорит о том, что утечка кислорода отсутствует и герметичность клапана не нарушена. Если же подтверждается подтекание кислорода, то редуктор следует отдать на ремонт.

Также следует помнить, что при креплении прибора не должны использоваться инструменты, вымазанные маслом, либо же сам прибор быть испачкан, так как это может привести к взрыву. Не подвергайте опасности себя и окружающих.

Источник

Принцип работы газовых редукторов

Принцип действия редуктора определяется его характеристикой. У редукторов прямого действия — падающая характеристика, то есть рабочее давление по мере расхода газа из баллона несколько снижается, у редукторов обратного действия — возрастающая характеристика, то есть с уменьшением давления газа в баллоне рабочее давление повышается.

Редукторы различаются по конструкции, принцип действия и основные детали одинаковы для каждого редуктора.

Редуктор обратного действия (рис. 1 а) работает следующим образом. Сжатый газ из баллона поступает в камеру высокого давления 8 и препятствует открыванию клапана 9. Для подачи газа в горелку или резак необходимо вращать по часовой стрелке регулирующий винт 2, который ввертывается в крышку 1. Винт сжимает нажимную пружину 3, которая в свою очередь выгибает гибкую резиновую мембрану 4 вверх. При этом передаточный диск со штоком сжимает обратную пружину 7, поднимая клапан 9, который открывает отверстие для прохода газа в камеру низкого давления 13. Открыванию клапана препятствует не только давление газа в камере высокого давления, но и пружина 7, имеющая меньшую силу, чем пружина 3. Автоматическое поддержание рабочего давления на заданном уровне происходит следующим образом. Если отбор газа в горелку или резак уменьшится, то давление в камере низкого давления повысится, нажимная пружина З сожмётся и мембрана 4 выправится, а передаточный диск со штоком 5 опустится и редуцирующий клапан 9 под действием пружины 7 прикроет седло клапана 10, уменьшив подачу газа в камеру низкого давления. При увеличении отбора газа процесс будет автоматически повторяться. Давление в камере высокого давления 8 измеряется манометром 6, а в камере низкого давления 13 — манометром 11. Если давление в рабочей камере повысится сверх нормы, то при помощи предохранительного клапана 12 произойдет сброс газа в атмосферу.

Помимо однокамерных редукторов применяют двухкамерные, в которых давление газа понижается постепенно в двух камерах редуцирования, расположенных последовательно одна за другой. Двухкамерные (двухступенчатые) редукторы обеспечивают более постоянное рабочее давление и менее склонны к замерзанию, однако они сложнее по конструкции, поэтому двухкамерные (двухступенчатые) редукторы используют тогда, когда необходимо поддерживать рабочее давление с повышенной точностью.

Редукторы прямого действия. В редукторах прямого действия (рис. 1, б) газ через штуцер 3, попадая в камеру высокого давления 6 и действуя на клапан 7, стремится открыть его (а в редукторах обратного действия — закрыть его). Редуцирующий клапан 7 прижимается к седлу запорной пружиной 5 и преграждает доступ газа высокого давления. Мембрана 1 стремится отвести редуцирующий клапан 7 от седла и открыть доступ газа высокого давления в камеру низкого (рабочего) давления 10. В свою очередь мембрана 1 находится под действием двух взаимно противоположных сил. С наружной стороны на мембрану 1 через нажимной винт 12 действует нажимная пружина 11, которая стремится открыть редуцирующий клапан 7, а с внутренней стороны камеры редуктора на мембрану давит редуцированный газ низкого давления, противодействующий нажимной пружине 11. При уменьшении давления в рабочей камере нажимная пружина 11 распрямляется, и клапан уходит от седла, при этом происходит увеличение притока газа в редуктор. При возрастании давления в рабочей камере 10 нажимная пружина 11 сжимается, клапан подходит ближе к седлу и поступление газа в редуктор уменьшается. Рабочее давление определяется натяжением нажимной пружины 11, которое изменяется регулировочным винтом 12. При вывертывании регулировочного винта 12 и ослаблении нажимной пружины 11 снижается рабочее давление и, наоборот, при ввертывании регулировочного винта сжимается нажимная пружина 11 и происходит повышение рабочего давления газа. Для контроля за давлением на камере высокого давления установлен манометр 4, а на рабочей камере — манометр 9 и предохранительный клапан 8.

В практике наибольшее распространение получили редукторы обратного действия как более удобные и безопасные в эксплуатации.

Техника безопасности при газовой резке металла

Техникой безопасности при газовой резке металла определено, что работать лучше на воздухе или в помещение с идеальной системой вентиляции, земляным или бетонным полом. Половое покрытие в радиусе 5-и метров нужно очистить от предметов, которые легко воспламеняются: стружки, ветоши, бумаги, листьев и растений. Заготовку лучше всего уложить на металлический стол удобной высоты. Ни на полу, ни на столе не должно быть пятен, оставленных легковоспламеняющимися веществами.

Перед началом работы необходимо убедиться, что под рукой имеется:

  • защитные средства (кожаные перчатки, защитные очки, крепкая обувь);
  • огнестойкая одежда (не допускается синтетика, рваные края, свободный крой);
  • инструменты (специальный карандаш, угольник, линейка);
  • специальная зажигалка (спички не подходят).

Самый большой вред работнику причиняется, если взрывается смесь из-за неправильного обращения с баллонами или горелкой. Самыми опасными считаются взрывы баллонов, наполненных кислородом. Если неправильно обращаться с горелкой, можно получить ожоги. На глаза отрицательно влияют видимые и инфракрасные лучи, искры, брызги шлака. Если не пользоваться защитными очками, существует вероятность на какое-то время потерять зрение.

Источник

Причины поломок редукторов

Как и любое техническое устройство, кислородный редуктор подвержен неполадкам, возникающим в процессе эксплуатации. Так, утечка кислорода может возникнуть из-за того, что нарушена герметичность между клапаном и камерами. Это может быть вызвано тем, что износилось уплотнение седла, выполненное из эбонита, или тем, что в механизм клапана попали посторонние частицы.

При работе в зимнее время кислородный редуктор может замерзнуть. Для предотвращения этого явления вентиль баллона необходимо закрыть и обдуть его теплым воздухом. Это устранит и наледь, и лишнюю влагу. Кстати, огонь для отогрева редуктора применять категорически запрещено.

Нередки случаи, когда происходит засорение редуктора посторонними частицами. Для предотвращения этого необходимо фильтр периодически продувать или промывать.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий