Вальцовочные станки для гибки листового металла

Выбор и обоснование конструктивной схемы станка

Принцип работы вальцового станка

Листогибочные вальцы различаются по следующим параметрам:

  1. По количеству рабочих валков: могут быть трех– или четырехвалковыми (установки с большим числом валков встречаются редко).
  2. По схеме расположения валков. Имеются механизмы, оси валков которых расположены симметрично и асимметрично поперечной оси.
  3. По способу фиксации валков в станине — на подшипниках качения или скольжения.
  4. По типу привода — от вальцев ручных, до приводимых в действие двигателями переменного и (реже) постоянного тока.

Вопрос — как сделать вальцы, которые будут предназначены для листового металла — следует начать с разработки технического задания. При этом следует учесть, что ручной привод эффективен при гибке изделий с толщиной не выше 0,8…1.2 мм, и при ширине не более 500…800 мм, иначе приводную рукоятку придется делать очень длинной. Это не только неудобно, но и приведет к увеличению размеров производственной площади, где предполагается установить агрегат.

По той же причине трехвалковую схему стоит предпочесть четырехвалковой — сложность изготовления возрастет, а видимых выгод пользователь не получит. Тем более нет смысла делать вальцы с еще большим количеством валков (например, семивалковые исполнения нужны при необходимости выполнения радиусной гибки листовых изделий на диаметры от 1500…1600 мм).

Более сложным является вопрос симметричности расположения валков в трехвалковых вальцах. Симметричная схема (при которой валки располагаются равносторонним треугольником: нажимной — сверху, а рабочие — снизу) конструктивно проще и технологичнее в изготовлении. Однако, после обработки на таком оборудовании передний и задний края заготовки на некотором расстоянии (примерно половины от межосевого) останутся прямыми и потребуют повторного цикла деформирования. Если на вальцах предполагается производство толстолистовых изделий преимущественно типа цилиндров с изогнутыми краями, то придется изготавливать асимметричную машину.

Особенности ротационных гибочных машин

Листогибочные вальцы пластически деформируют заготовку не одновременно по всей её поверхности, а лишь в той части, которая находится под непосредственным воздействием рабочего инструмента. Цикл гибки при этом удлиняется, но одновременно резко снижается усилие процесса. Первый параметр с эксплуатационной точки зрения более важен, поскольку разница с несколько секунд решающего значения не имеет, в отличие от энергозатрат и мощности привода. У листогибочных вальцев (независимо от их конструктивного исполнения) мощность электродвигателя существенно меньше, чем у листогибочных прессов с теми же технологическими возможностями.

Цикл гибки при этом удлиняется, но одновременно резко снижается усилие процесса. Первый параметр с эксплуатационной точки зрения более важен, поскольку разница с несколько секунд решающего значения не имеет, в отличие от энергозатрат и мощности привода.

Второе позитивное отличие рассматриваемого оборудования от листогибочных прессов – компактность и простота конструкции, что определяет низкую ремонтную сложность вальцев. Впрочем, выходят они из строя существенно реже, поскольку не имеют пиковой нагрузки при работе.

Листогибочные вальцы легко и удобно автоматизировать, поэтому соответствующие исполнения данных машин часто встраиваются в технологические линии профилирования листового металла.

В ремонтном производстве, а также в строительстве используются листогибочные вальцы с ручным приводом. Многие фирмы выпускают такое оборудование именно без использования приводных электродвигателей, ориентируясь на потребителей из сферы мелкого бизнеса. Известны ручные листогибочные вальцы от фирм Tapco (США), Metallmaster (Польша) и др. Ряд моделей такого оборудования не требуют фундамента, и легко переустанавливаются на новое место использования.

Классификация вальцев для гибки металла в холодном состоянии

Выполняется по следующим параметрам:

  1. По количеству приводных рабочих валков.

    Чаще выпускаются трёх и четырёхвалковые машины, хотя для некоторых специализированных ситуаций возможно применение техники с пятью и даже семью рабочими валками (их число должно быть нечётным).

  2. По компоновке валков различают вальцы с симметричным и асимметричным расположением. Явного преимущества тот и другой виды компоновки друг перед другом не имеют, и применяются сообразно конкретной ситуации.
  3. По форме станины производятся вальцы с закрытой станиной, и вальцы консольного типа, станина которых имеет С-образную форму. Консольные вальцы отличаются пониженной жёсткостью, а потому применяются в основном для продольной гибки полосы из тонколистовой стали или более пластичных металлов (например, алюминия).
  4. По типу привода различают вальцы с ручным и электромеханическим приводом.

Технические требования к конструкциям данного штамповочного оборудования устанавливает ГОСТ 10664.

Выбор вида гибочных вальцев определяется технологическими требованиями к готовому изделию. В частности, имеют значение ширина и длина изгибаемой заготовки, потребность в дополнительных операциях деформирования (например, формовки ребёр жёсткости), требующиеся производительность и точность гибки и т.д. В некоторых случаях решающее значение имеют даже условия эксплуатации. Например, фирма Tapco специально выпускает размерный ряд вальцев, которые рассчитаны на эксплуатацию вне помещений. Поэтому все рабочие детали оборудования этой фирмы имеют антикоррозионное покрытие, либо изготавливаются из нержавеющей стали. Такие машины в специальном фундаменте не нуждаются.

Виды вальцовочных машин

трехвальцовый станок с электроприводом и пультом управления

Вальцовочные механизмы используются в основном на средних и крупных производствах. В мелких мастерских их роль успешно выполняют ручные листогибы.

Вальцовочные машины бывают механическими и электромеханическими.

Механические станки это наиболее простая и дешевая конструкция. Она содержит три вальца, которые вращаются мускульной силой. Движение от рукоятки на исполнительный механизм передается шестеренками. Верхний вал прижимается механическими прижимами. Характеристики механических вальцов:

  • длина заготовки — 34 см — 2 м;
  • толщина материала 0,8 — 3 мм.

Устройство не позволяет выполнять конусные изгибы. Чаще всего механические вальцовки используются в малых цехах и мастерских для изготовления изделий из алюминиевого и стального тонкого листа.

Электромеханические станки более производительные, оснащены электроприводом, который вращает исполнительный механизм. За счет применения электрической установки можно увеличить толщину металла и скорость выполнения работы. Электропривод всегда оборудуется тормозом. Реверс и моментальная остановка требуются в начале изготовления детали и при формовке желобов. Дополнительно оборудование комплектуется насадками для изготовления профильных труб квадратного сечения, уголков.

Характеристики электромеханических вальцов:

  • длина заготовки варьирует 34 см до 2 м;
  • наибольшая толщина листового металла — 1 см.

Существуют модели с памятью настроек. Станок фиксирует диаметр трубы, поэтому не требуются выставлять его для каждой новой заготовки. Подобное возможно благодаря редуктору верхнего вала. Верхний вал освобождается с помощью защелки. Квалифицированный специалист за одну минуту может изготовить на таком станке 2 трубы.

Тип приводаНаибольшая ширина листа, смНаибольшая толщина листа, ммДиаметр вальцов, ммГабариты станка, смВес, кг
ВРН-340ручной3434160 х 30 х 2035
СЭТ-1250электрический125190
ВРН-1300ручной130176145 х 25 х 30120
ВРМ-1500ручной1501,570175 х 60х100
Корветэлектрический1301,575175 х 53 х 63275
Proma ZS-8электрический1000,850142 х 34 х 5086
АВР 1000ручной1000,755 — 58160 х 55 х 118120
ВЭН-1300электрический1300,876155 х 30 х 28145
ВЭЛ-2000электрический200172275 х 76 х 107345

Таблица 1. Характеристики некоторых моделей вальцовочных станков

Четырехвалковые станки

четырехвалковый станок

Более производительные и мощные устройства на гидравлической тяге. Их используют не только при изготовлении строительных элементов, но и в авиастроении, кораблестроении, гидромашиностроении. Производительность их на 45 — 80% больше, чем у трехвалковых. Они обладают следующими преимуществами:

  • процедура подгибки и гибки усовершенствована, благодаря чему плоский край получается короче;
  • в один проход материала осуществляется гибка листа с обоих краев;
  • не требуется предварительная подгибка листа, необходимая на трехвалковых устройствах;
  • автоматический режим не подразумевает дополнительные заправки материала. Лист подается горизонтально, а не наклонно, как в трехвалковых;
  • четырехвалковые механизмы работают с листами пятиметровой ширины.

Четырехвальцовые станки оснащены дополнительным роликом спереди. Когда металл размещен между нижними и верхним роликом, передвижением дополнительного ролика снизу-вверх подгибается передний край листа. Таким образом, получается наиболее удобная для будущей вальцовки форма. Дополнительный вал перемещается за счет пневматического механизма.

Вальцы с ЧПУ

Стандартный вальцовочный механизм с электроприводом дополнительно оснащается числовым программным управлением. Цифровое позиционирование осуществляется для прижимного вальца. Как правило, такие станки могут работать в ручном или автоматическом режимах.

Программы предусматривают гибку трубы с сечением:

  • прямоугольник;
  • овал;
  • круг;
  • треугольник;
  • неправильный овал.

На таком станке легко изготавливать корпусы для бойлеров, печей, трубы, баки. Заготовка подается плавно, автоматически регулируется толщина материала и угол загиба. В память числового программатора можно ввести более 250 программ, оборудование оснащается системой защиты от сбоев и самодиагностикой неполадок. При выполнении изделия вводятся индивидуальные настройки. Только на станках с ЧПУ возможно изготавливать такие формы, как полицентрик или эллипс. В качестве дополнения к вальцовочному аппарату предлагается устройство для автоматического сброса изделий и накопительная площадка для труб.

Область применения

Процесс вальцевания листового металла представляет собой способ деформации, который производят непрофилированным вращающимся инструментом. Это операция холодной штамповки, при которой металл обретает форму конуса. После обработки таким способом структура заготовки становится плотнее, улучшаются ее основные свойства.

Деформацию металла применяют во многих случаях и для разных материалов. Например, вальцевание является подготовительным этапом для штамповки готового изделия. Эта же технология используется для первичной переработки заготовок.

Такой процедуре может подвергаться не только листовой металл, но и трубы, прутки и другие профили, изделия из резиновых смесей и пластмасс

Важно, чтобы материал был в необходимой мере пластичным

Вальцовку металла часто применяют для уплотнения, сдавливания и плющения заготовок, для придания им равномерного лоска и толщины. Процесс может протекать и в холодном состоянии, и в нагретом. Возможно нагревание валков и изменение скорости прохождения заготовки.

Сегодня вальцовкой металла занимаются не только на производстве, но и в домашних условиях, для чего используют специальный одноименный инструмент. На предприятиях это большие станки с электро- и гидроприводами. Для ремонтных мастерских более подходят простые конструкции, часто изготовленные своими руками.

Технологический процесс деформации металла данным способом состоит из нескольких этапов:

  • Подготовка оборудования — вальцов.
  • Прокатка бруска или листа.
  • Промежуточный отжиг.
  • Обработка заусениц и трещин.
  • Завершающий отжиг и прокатка.

Отсутствие заусениц и трещин — одно из главных условий качественного вальцевания. Такие дефекты могут появиться в случае чрезмерно сильного обжима валками бруска либо от неравномерного напряжения и отжига. Выявляют дефекты и устраняют их на четвертом этапе работы после промежуточного отжига. Если этого не сделать и продолжить прокатку, то трещины будут увеличиваться.

Устраняют брак затиранием трещин надфилем и отпиливанием, откусыванием заусениц. Затем, чтобы снять с металла напряжение, заготовку отжигают и продолжают прокатку металла. Образовавшиеся углубления выравниваются.

Это интересно: Сверло по металлу: виды, маркировка, правила выбора, производители

ИБ2222 Машина листогибочная трехвалковая для гибки листового металла. Вальцы. Паспорт, схемы, характеристики, описание

Изготовитель трехвалковой листогибочной машины ИБ2222 – Славгородский завод кузнечно-прессового оборудования КПО имени 8-летия Октября.

Разработчик листогибочной машины ИБ2222 — Азовское специальное конструкторское бюро кузнечно-прессового оборудования и автоматических линий, СКБ Ко.

ИБ2222 Общий вид машины листогибочной трехвалковой

Фото машины листогибочной трехвалковой ИБ2222

Фото машины листогибочной трехвалковой ИБ2222

Фото машины листогибочной трехвалковой ИБ2222

ИБ2222 Расположение составных частей трехвалковой листогибочной машины

Расположение составных частей машины листогибочной ИБ2222

Расположение составных частей машины листогибочной ИБ2222

ИБ2222 Перечень составных частей трехвалковой листогибочной машины

  1. Рама – ИБ2222-11-001
  2. Стойки – ИБ2222-12-001
  3. Опора откидная – ИБ2222-14-001
  4. Приспособление для гибки конических обечаек – ИБ2222-15-001
  5. Привод главный – ИБ2222-21-001
  6. Привод регулировки высоты боковых валков – ИБ2222-22-001
  7. Механизм наклона откидной опоры – ИБ2222-23-001
  8. Валок верхний – ИБ2222-31-001
  9. Валки боковые – ИБ2222-32-001
  10. Ограждение – ИБ2222-71-001
  11. Смазка – ИБ2222-82-001
  12. Электрооборудование – ИБ2222-91-001
  13. Электрошкаф – ИБ2222-92-001
  14. Пульт управления – ИБ2222-93-001
  15. * Стол передний – СШ6
  16. * Стол приемный – СП20
  17. * Механизм съема изделия – МСИ8
  18. * Механизм поддержки обечайки – МП01
  19. * Инструмент для гибки уголков, полос, квадратов, труб, швеллеров – ИБ2222-64-001
  20. Выключатель коленный – ИБ2222-65-001

* Для машин со средствами механизации

ИБ2222 Перечень органов управления вальцами

  1. Общий стоп
  2. Переключатель цепи управления
  3. Переключатель направления вращения главного привода
  4. * Кнопка включения механизма съема – вперед
  5. * Кнопка включения механизма съема – назад
  6. Кнопка включения подъема откидной опоры
  7. Кнопки опускания откидной опоры
  8. Кнопка переключения механизма поддержки обечайки вверх
  9. Кнопка переключения механизма поддержи обечайки вниз
  10. Кнопка перемещения заднего бокового валка вверх
  11. Кнопка перемещения заднего бокового валка вниз
  12. Кнопка перемещения переднего бокового валка вверх
  13. Кнопка перемещения переднего бокового валка вниз
  14. Лампа сигнальная “Сеть”
  15. Лампа сигнальная “Главный привод включен”

* Для машин со средствами механизации

Примечание: На листогибочных машинах пульт управления может быть встроенным в ограждение главного привода (машины ИБ2213, ИБ2216) или быть выносным – крепиться к кронштейнам коленного выключателя (машины ИБ2219, ИБ2220, ИБ2222).

Кинематическая схема листогибочной машины ИБ2222

ИБ2222 Кинематическая схема трехвалковой листогибочной машины. Смотреть в увеличенном масштабе

  1. Электродвигатель привода боковых валков (М1) (главный привод) – 12 кВт
  2. Шкив – Ø200
  3. Шкив – Ø400
  4. Редуктор – Ц2У-315Н-40-21
  5. Шестерня – m=16, z=18
  6. Шестерня – m=16, z=21, 2шт
  7. Валок боковой – Ø260, 2шт
  8. Реле контроля скорости – нет
  9. Электродвигатель регулировки высоты боковых валков (М2,3) – 5,5 кВт, 2шт
  10. Муфта, 2шт
  11. Шкив – Ø140, 2шт
  12. Шкив – Ø180, 2шт
  13. Редуктор – 4-125-31,5-56-3ц-У4, 4шт
  14. Муфта, 2шт
  15. Винтовая пара подъема бокового валка – Tr86 х 10, 4шт
  16. Рычаг, 4шт
  17. Валок верхний – Ø270
  18. Винт – Tr60 х 9
  19. Винт подъема верхнего валка
  20. Откидная опора верхнего валка
  21. Электродвигатель механизма наклона откидной опоры верхнего валка (М4) – 1,1 кВт

Используемое оборудование

Оборудование, которое используется для вальцевания, отличается не только своей универсальностью, но и простотой конструкции, поэтому его несложно изготовить своими руками. Конечно, самодельные станки для вальцевания оптимально подходят для домашнего использования, а для оснащения производственного цеха, где нагрузка на такое оборудование достаточно велика, лучше всего приобретать серийные модели вальцов, представленные на современном рынке в большом разнообразии.

Как серийные, так и самодельные модели станков, при помощи которых осуществляется вальцевание, работают по принципу обкатки листового материала вокруг основного валка, расположенного сверху. В таком процессе принимают участие и боковые валки, которые можно перемещать, регулируя тем самым диаметр формируемой обечайки.

Валки этого станка вращаются вручную, а приближение верхнего ролика производится с помощью двух рукояток

Важными характеристиками вальцов является радиус их рабочих элементов – валков, а также наибольшая толщина и ширина обрабатываемой детали. Радиус валков, в частности, оказывает влияние на такой параметр, как минимальный радиус изгиба заготовки. Чем валки больше в своем диаметре, тем, соответственно, больше значение минимального радиуса изгиба заготовки из листового металла. На величину минимального радиуса изгиба также оказывает влияние и толщина самого листа. Как правило, для вальцов минимальный радиус изгиба листовой заготовки должен быть 5-10-кратным ее толщине.

С учетом высоких нагрузок, которые испытывают в процессе работы валки, для их изготовления используют только высокопрочную сталь, что позволяет значительно улучшить их эксплуатационные характеристики. По количеству рабочих элементов различают двух-, трех- и четырехвалковые станки, причем наиболее популярными являются два последних вида.

Основные различия между 3-х и 4-х валковыми станками

Вальцы листогибочные 3-х валковые, рабочие элементы которых могут располагаться симметрично и ассиметрично, хотя и отличаются приемлемой ценой, обладают такими недостатками, как:

  • невысокая скорость вальцевания (не более 5 м/мин);
  • сложность выполнения обработки заготовок толщиной менее 6 мм, которые могут просто проскальзывать между валками;
  • отсутствие точных координат у точки зажима обрабатываемого изделия.

Всех подобных недостатков лишены вальцы, на которых установлен дополнительный – четвертый – вал. За счет надежного зажима листовая заготовка из металла в процессе обработки не проскальзывает между валками. При этом обеспечивается высокая скорость вальцевания – 6 м/мин и более.

Станок с 4-х валками способен изготавливать, помимо цилиндрических, овальные и полицентрические заготовки

Вальцы данного типа, как правило, оснащаются автоматизированными системами управления, что положительно сказывается не только на их производительности, но и на точности выполняемой обработки. Большим и, пожалуй, единственным минусом такого устройства является его высокая стоимость.

Изготовление станка своими руками

На первом этапе проектирования конструкции необходимо выбрать оптимальные чертежи. Для этого можно использовать стандартные схемы или разработать индивидуальную на основе имеющихся материалов.

Будущая листогибочная конструкция будет состоять из следующих компонентов:

  • опорная рама. Она изготавливается из 2 листов металла, которые соединяются между собой ребрами жесткости. Для увеличения устойчивости и механической прочности по краям каждого компонента рекомендуется приварить стальные уголки. В верхней части располагаются монтажные пазы для установки опорных валов;
  • опора верхнего вала. Для ее производства рекомендуется применять стальной п-образный профиль. Смещение конструкции по высоте будет происходить с помощью червячной передачи;
  • механизм ручного привода. Обычно его делают из трех звездочек, соединенных между собой цепью. Рекомендуется предусмотреть механизм натяжения цепи, чтобы избежать ее срыв во время выполнения работы.

Для изготовления ручных вальцов своими руками из специального оборудования потребуется только сварочный аппарат. Для улучшения качества обработки рекомендуется приобрести заводские валы. Самостоятельное изготовление подобных компонентов затруднительно и не всегда фактический результат соответствует желаемому.

Изготовление листогибочной конструкции начинается с выбора инструментов. Для выполнения этого процесса необходима болгарка, сварочный аппарат, дрель со сверлами по металлу. После приобретения материалов можно приступать к изготовлению ручных листогибочных вальцов.

  1. Раскрой материала.
  2. Сверка фактических размеров с данными из технической документации.
  3. Соединение компонентов между собой с помощью сварочного аппарата. Использование механических соединений не рекомендуется, так как они не обладают достаточной надежностью.
  4. Установка вальцов на станину.
  5. Соединение полос с передаточными звездочками. В этом случае необходимо использовать механическое соединение, так в случае поломки одного из компонентов ремонт установки будет затруднен.

После изготовления конструкций все элементы опорной рамы необходимо загрунтовать и покрасить. Испытание листогибочного станка, сделанного своими руками, проводится по определенной схеме. Сначала проверяется скорость подачи (вращение валов), контролируется работа механизм опускания верхнего вала. В качестве пробного материала лучше всего использовать стальные листы небольшой толщины. Расстояние между валами следует уменьшать постепенно. При этом проверяется устойчивость станка и отсутствие деформации.

В дальнейшем после длительной эксплуатации понадобится правка поверхности валов, так как со временем изменится их конфигурация.

В качестве примера можно посмотреть работу заводской модели станка:

Изогнутая профильная труба находит широкое применение в строительстве различных конструкций. Гнутый профиль придает крыше обтекаемую форму, эстетически привлекателен при строительстве арочных конструкций, проемов, выдерживает серьезные динамические нагрузки. Купить профиль необходимого диаметра не представляет проблемы. Придать прямолинейной металлической профильной трубе нужный изгиб без использования специальной техники невозможно.

Согнуть профиль можно вручную, используя газовую горелку и прикладывая физическое усилие. Но даже для такой простой операции необходимо трубу прочно закрепить, выбрать безопасное место для проведения нагрева, приспособить рычаги для приложения усилия. Еще труднее сделать несколько симметрично изогнутых профилей.

Решается эта задача использованием специальной методики – вальцевания профильной трубы.

Конструкция листогибочного станка

отличается несложной конструкцией, но при этом позволяет формировать на тонколистовых заготовках достаточно точные изгибы. Используя такой станок, можно сгибать даже окрашенный и оцинкованный листовой металл.

Для изготовления основания гибочного станка, которое имеет сварную конструкцию, можно использовать швеллер №6 или №8, длина которого подбирается в зависимости от длины будущего устройства. Например, длина станка для гибки жести обычно не превышает 50 см. Чтобы на самодельном устройстве можно было изгибать заготовки на угол, превышающий 90°, необходимо предусмотреть прижим, для изготовления которого используют металлические уголки. Формирование таких углов загиба может потребоваться в том случае, если станок вам необходим для изготовления фальцев.

Схема самодельного листогиба

Основа прижима сваривается из уголков 50х50, а укрепляется изделиями 35х35. При этом толщина стенок используемых уголков должна быть не меньше 5 мм, только в таком случае получится обеспечить создаваемой конструкции требуемую массивность. Изготовленный таким образом прижим может успешно применяться для оснащения листогибочного станка, рабочая длина которого составляет 150 см. Прижим из уголков, которыми вы оснастите свой , позволяет гнуть металл на угол до 135°. Этого вполне достаточно для того, чтобы сформировать на краях заготовки элементы фальцевого соединения.

Изготавливая из металлических уголков прижим станка, предназначенного для гибки металла, следует иметь в виду, что длина такого приспособления должна быть примерно на 7 см меньше, чем длина основания самого оборудования. На торцы прижимного устройства необходимо наварить крепежи-кронштейны, в качестве которых можно использовать уголки с размером полок 3х3 см. Посредине полок каждого уголка-кронштейна просверливают отверстия диаметром 8 мм. В том случае, если для изготовления таких кронштейнов используются уголки большего размера, общую длину прижимного устройства сокращают еще на 2–3 см, что даст возможность без ограничений разместить в нижней части гибочного оборудования прижимную пружину.

Самодельное гибочное устройство размещается на своей станине или закрепляется на верстаке

Края прижимного устройства, которым будет оснащен ваш ручной станок, должны быть идеально ровными, без заусенцев и неровностей. Для того чтобы устранить такие дефекты на рабочей поверхности прижимного устройства, ее можно обработать при помощи надфиля, фрезы или углошлифовальной машинки.

Важным элементом конструкции станка, предназначенного для выполнения гибки металла, является пунсон для обжима, который можно изготовить из уголка №5. Длина пунсона должна быть на 5–8 мм меньше, чем длина самого прижима. Для того чтобы пунсоном было удобно манипулировать, его необходимо оснастить рукояткой, которую можно изготовить из металлического прутка диаметром 14 мм, согнув его в форме скобы. Кроме того, на боковых частях пунсона необходимо зафиксировать две щечки, предварительно вырезав их из листового металла толщиной 5 мм. Для фиксации таких щечек в них высверливают отверстия диаметром 10 мм.

Процесс установки петель

С ребер пунсона в торцевой части данного элемента снимаются фаски глубиной 5 мм и длиной 30 мм, которые необходимы для того, чтобы установить на металлогибочный станок стальные оси. Эти оси изготавливают из прутка диаметром 10 мм. Их приваривают к основанию гибочного станка таким образом, чтобы направление их осевой линии совпадало с ребром уголка. Фаски (уже размером 32х6 мм) снимают и на ребре основания, со стороны его торцов.

Проверка станка на работоспособность и доводка

После того как вы собрали устройство для гибки листового металла своими руками, необходимо протестировать его на работоспособность. Для выполнения пробной гибки лучше использовать более мягкий металл, в качестве которого может выступать лист из жести, гнущийся очень хорошо. Лист укладывается на основание гибочного станка и фиксируется на нем при помощи прижима. Выполняя пробную гибку, прижим станка можно временно притянуть к его основанию струбцинами или использовать для этих целей резьбовые шпильки с накладками.

Если положение данных конструктивных элементов не совсем верное, его подправляют и только после этого приваривают их к станине основательно. Для того чтобы надежно фиксировать прижимное устройство станка в процессе выполнения гибки, используют болты, выступающие над станиной, которые должны совпадать с отверстиями в кронштейнах прижимного механизма. Чтобы установить такие болты на станине, в ней просверливают отверстия, в которых нарезается резьба М10. Болты в такие отверстия вкручиваются по направлению снизу вверх, после чего их шляпки привариваются к нижней части станины.

Установка зажимных болтов с пружинами

Чтобы болты, установленные на станине, легко входили в отверстия в кронштейнах прижимного механизма, их увеличивают до диаметра 10 мм. Гайки, которые будут накручиваться на верхнюю часть таких болтов и тем самым фиксировать на станине гибочного оборудования прижимной механизм, лучше выбрать в виде маховичков, это значительно повысит удобство работы с вашим самодельным станком. Прижимной механизм в процессе его откручивания от станины должен отжиматься. Для этого на болты, при помощи которых он фиксируется, можно надеть пружины или резиновые амортизаторы.

В качестве рукояток привариваем к шляпкам болтов стержни

Собрав самодельный станок для гибки листового металла по вышеописанной методике, вы не зададитесь вопросом о том, как гнуть жесть или как согнуть окрашенный металл: даже оцинковка может обрабатываться на этом оборудовании с достаточно высокой эффективностью. Между тем есть у такого гибочного станка и ряд недостатков.

  • Конструкция крепления щечек и пунсона недостаточно хорошо продумана, в процессе работы гибочного станка данные элементы постоянно трутся друг о друга и, соответственно, активно изнашиваются. В результате в механизме возникает люфт, приводящий к неточностям в процессе выполнения гибки. Исправить этот недостаток позволяет использование подшипников в данном узле.
  • Гибочные станки вышеописанной конструкции не отличаются высокой производительностью и могут применяться только в том случае, если необходимо выполнить небольшой объем работ. Чтобы изготовить более производительный ручной станок, необходимо доработать конструкцию прижимного механизма.

Самодельный гибочный станок в работе

Очень помогает изготовить такой станок своими руками видео. Что характерно, многие профессиональные жестянщики, собирающие станки для гибки листового металла практически из металлолома, предпочитают использовать в своей деятельности именно самодельное оборудование.

Гибочные станки роликового типа, отличающиеся более сложной конструкцией, также могут быть изготовлены самостоятельно. Однако, какого бы типа ни был станок, который вы собираетесь изготовить самостоятельно, следует учитывать, что управлять таким оборудованием вы будете вручную, поэтому делать его слишком габаритным и мощным не имеет смысла. Если говорить об особенностях использования роликовых гибочных станков, следует иметь в виду, что при обработке заготовки на таком оборудовании ее отдельные участки могут подвергаться деформации. Именно поэтому профессиональные жестянщики не очень любят работать на устройствах подобного типа.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий